怎样使用Python脚本日志功能

系统 1812 0

  假设要开发一个自动化脚本工具,工程结构如下, Common 这个 package 是框架功能的实现, Scripts 目录是我们编写的测试用例脚本(请忽略其他不相关的目录)。

  我们对日志功能的需求如下:

       1 为了便于日志的查看,每个脚本对应一个日志文件,日志文件以脚本的名字命名

       2 日志路径以及每个脚本保存的日志容量可以设置,比如设置为5MB,则超过后最老日志被自动覆盖

       3 日志功能要使用方便,减少与框架业务功能的耦合

怎样使用Python脚本日志功能_第1张图片

  现在来逐一分析上述需求。

1 要实现每个脚本一个日志文件 ,则需要在日志模块中,根据用例脚本的名字来生成日志文件,这里的关键问题就是怎样在日志模块中获取用例脚本的名字。

  获取文件名的常用方法有: os.getcwd() , sys.argv[0], __file__, 来看下各种的作用:

  先在一个文件(假设为 test.py )中编写如下代码:

怎样使用Python脚本日志功能_第2张图片

  然后在另一个文件中(假设为 script1.py )中 import test ,然后调用 func 方法:

  运行 script1.py ,结果为:

  可见, os.getcwd() 获取的是执行脚本的目录, sys.argv[0] 是执行脚本的绝对路径名, __file__ 是被执行代码所在文件的绝对路径名。

  现在就清楚了,我们应该用 sys.argv[0] 来获取执行脚本的名字,由于获取到的是绝对路径,需要做一点处理: sys.argv[0].split('/')[-1].split('.')[0]

2 日志容量问题 ,要实现超过容量后自动覆盖最老日志,采用 logging 中的 RotatingFileHandler 类即可,可以设置日志文件的大小,以及备份个数。

  那么日志路径和容量配置放在哪里呢?让用户直接修改 RotatingFileHandler 的参数显然不好,最好不要让用户修改框架文件,用户只需调用接口写自己的脚本即可。

  这里采用的方案是将配置信息写入一个文件,XML文件比较适合用来作为配置文件,用户通过修改XML文件来制定配置,日志模块从XML文件读取参数。

  这里为了方便将XML文件放入 Common 下面,命名为 config.xml ,内容为:

            
                            
                E:\PythonLog
              
                            
                8
              
                            
                3
              
            
          

  读取XML文件内容,使用 lxml 库非常简单,后面再给出代码。

3 日志功能要使用方便 ,减少与框架业务功能的耦合,最好就是对日志功能进行封装,只提供记录日志的接口即可。

  日志接口采用类方法的形式就可以满足上述要求,用户只需要通过类调用日志记录接口,随处调用,使用方便,并且无需定义类实例,与框架业务没有耦合。    

  有了上述分析,我们来实现日志模块。

  由于日志功能也是框架基础的一部分,我们将日志模块也放在 Common 这个 package 中,在 Common 下新建 log.py 文件,代码如下:

            
# coding: utf-8

from lxml import etree
import logging.handlers
import logging
import os
import sys

# 提供日志功能
class logger:
  # 先读取XML文件中的配置数据
  # 由于config.xml放置在与当前文件相同的目录下,因此通过 __file__ 来获取XML文件的目录,然后再拼接成绝对路径
  # 这里利用了lxml库来解析XML
  root = etree.parse(os.path.join(os.path.dirname(__file__), 'config.xml')).getroot()
  # 读取日志文件保存路径
  logpath = root.find('logpath').text
  # 读取日志文件容量,转换为字节
  logsize = 1024*1024*int(root.find('logsize').text)
  # 读取日志文件保存个数
  lognum = int(root.find('lognum').text)

  # 日志文件名:由用例脚本的名称,结合日志保存路径,得到日志文件的绝对路径
  logname = os.path.join(logpath, sys.argv[0].split('/')[-1].split('.')[0])

  # 初始化logger
  log = logging.getLogger()
  # 日志格式,可以根据需要设置
  fmt = logging.Formatter('[%(asctime)s][%(filename)s][line:%(lineno)d][%(levelname)s] %(message)s', '%Y-%m-%d %H:%M:%S')

  # 日志输出到文件,这里用到了上面获取的日志名称,大小,保存个数
  handle1 = logging.handlers.RotatingFileHandler(logname, maxBytes=logsize, backupCount=lognum)
  handle1.setFormatter(fmt)
  # 同时输出到屏幕,便于实施观察
  handle2 = logging.StreamHandler(stream=sys.stdout)
  handle2.setFormatter(fmt)
  log.addHandler(handle1)
  log.addHandler(handle2)

  # 设置日志基本,这里设置为INFO,表示只有INFO级别及以上的会打印
  log.setLevel(logging.INFO)

  # 日志接口,用户只需调用这里的接口即可,这里只定位了INFO, WARNING, ERROR三个级别的日志,可根据需要定义更多接口
  @classmethod
  def info(cls, msg):
    cls.log.info(msg)
    return

  @classmethod
  def warning(cls, msg):
    cls.log.warning(msg)
    return

  @classmethod
  def error(cls, msg):
    cls.log.error(msg)
    return
          

  来测试一下,在脚本 script1 script2 中分别编写下面代码:

            
from Common.log import *

logger.info('This is info')
logger.warning('This is warning')
logger.error('This is error')
          

  分别运行两个脚本,控制台输出为:

  产生的日志文件:

怎样使用Python脚本日志功能_第3张图片

  文件内容:

  好了,现在不管是在框架的其他文件中,或是在用户脚本中,都可以方便的通过logger类的日志接口记录日志。以上就是怎样使用Python脚本日志功能的全部内容,希望本文对大家学习python能有所帮助。


更多文章、技术交流、商务合作、联系博主

微信扫码或搜索:z360901061

微信扫一扫加我为好友

QQ号联系: 360901061

您的支持是博主写作最大的动力,如果您喜欢我的文章,感觉我的文章对您有帮助,请用微信扫描下面二维码支持博主2元、5元、10元、20元等您想捐的金额吧,狠狠点击下面给点支持吧,站长非常感激您!手机微信长按不能支付解决办法:请将微信支付二维码保存到相册,切换到微信,然后点击微信右上角扫一扫功能,选择支付二维码完成支付。

【本文对您有帮助就好】

您的支持是博主写作最大的动力,如果您喜欢我的文章,感觉我的文章对您有帮助,请用微信扫描上面二维码支持博主2元、5元、10元、自定义金额等您想捐的金额吧,站长会非常 感谢您的哦!!!

发表我的评论
最新评论 总共0条评论