isinstance()
判断isinstance(obj,cls)中obj是否是cls类的对象
class
Person:
def
__init__
(self,name):
self.name
=
name
p
= Person(
'
Jane
'
)
print
(isinstance(p,Person))
#
True
issubclass()
判断issubclass(sub,super)中sub是否是super类的派生类
class
Person:
def
__init__
(self,name):
self.name
=
name
class
Father(Person):
pass
print
(issubclass(Father,Person))
#
True
print
(issubclass(Person,Father))
#
False
反射
反射就是用字符串类型的名字去操作变量,python中的一切事物皆为对象(都可以使用反射)
1.hasattr()
函数用于判断对象是否包含对应的属性,通常和getattr一起搭配使用,先用hasattr判断是否这个对象含有这个属性,如果有就通过getattr来拿值,如果没有就提示没有这个属性
class
Person:
age
= 20
def
__init__
(self,name,height,weight):
self.name
=
name
self.height
=
height
self.weight
=
weight
def
fuc(self):
print
(
'
weight...height...
'
)
#1
if
hasattr(Person,
'
age
'
):
print
(getattr(Person,
'
age
'
))
#
20
else
:
print
(
'
没有这个类属性!
'
)
#2
p
= Person(
'
Adson
'
,1.6,75
)
if
hasattr(p,
'
bmi
'
):
print
(getattr(p,
'
bmi
'
))
else
:
print
(
'
没有这个属性!
'
)
#
没有这个属性!
#3
if
hasattr(p,
'
fuc
'
):
getattr(p,
'
fuc
'
)()
#
weight...height...
else
:
print
(
'
没有这个方法!
'
)
2.getattr()
函数用于返回一个对象属性值
(1)反射对象的属性
class
A:
def
__init__
(self,name):
self.name
=
name
a
= A(
'
Adson
'
)
ret
= getattr(a,
'
name
'
)
print
(ret)
#
Adson
(2)反射对象的方法
class
A:
def
fuc(self):
print
(
'
This is fuc!
'
)
a
=
A()
ret
= getattr(a,
'
fuc
'
)
print
(ret)
#
<__main__.A object at 0x00000000024E1C88>> 获得一个绑定方法的地址
ret()
#
This is fuc! 在ret后加上括号去调用方法
(3)反射类的属性
class
A:
age
= 18
ret
= getattr(A,
'
age
'
)
print
(ret)
#
18
(4)反射类的方法(classmethod、staticmethod)
一般的调用方式是类名.方法名
class
A:
@classmethod
def
fuc(cls):
print
(
'
This is class fuc!
'
)
ret
= getattr(A,
'
fuc
'
)
print
(ret)
#
> 获得一个绑定方法
ret()
#
This is class fuc!
getattr(A,
'
fuc
'
)()
#
This is class fuc! 简写
(5)反射模块的变量
先建立一个模块,模块名pyfile.py,增加一个变量
dic = {
'
apple
'
: 18,
'
banana
'
: 20}
然后通过我的模块反射pyfile模块的变量
import
pyfile
print
(pyfile.dic)
#
{'apple': 18, 'banana': 20}
ret = getattr(pyfile,
'
dic
'
)
print
(ret)
#
{'apple': 18, 'banana': 20}
(6)反射模块的方法
先建立一个模块,模块名pyfile.py,增加一个方法
def
fuc():
print
(
'
abc123aaa!!!
'
)
然后通过我的模块反射pyfile模块方法
import
pyfile
ret
= getattr(pyfile,
'
fuc
'
)
print
(ret)
#
ret()
#
abc123aaa!!!
getattr(pyfile,
'
fuc
'
)()
#
abc123aaa!!!
(7)反射模块的类
先建立一个模块,模块名pyfile.py,增加一个类
class
B:
price
= 200
def
__init__
(self,name):
self.name
=
name
def
fuc(self):
print
(
'
This classB fuc..
'
+ self.name)
然后通过我的模块反射pyfile模块方法
import
pyfile
b
= getattr(pyfile,
'
B
'
)(
'
Josn
'
)
#
getattr相当于拿到了这个模块的B类 并进行实例化了一个b对象
print
(b.
__dict__
)
#
{'name': 'Josn'}
print
(b.price)
#
200
b.fuc()
#
This classB fuc..Josn
(8)反射自身模块的变量
通过sys.modules['__main__']找到当前的模块
import
time
import
sys
t
=
time.asctime(time.localtime(time.time()))
print
(t)
#
Mon Sep 9 22:36:40 2019
print
(sys.modules[
'
__main__
'
])
#
print
(sys.modules[
'
__main__
'
].t)
#
Mon Sep 9 22:38:01 2019
ret = getattr(sys.modules[
'
__main__
'
],
'
t
'
)
print
(ret)
#
Mon Sep 9 22:39:05 2019
(9)反射自身模块的方法
import
sys
def
fuc():
print
(
'
abc123...
'
)
ret
= getattr(sys.modules[
'
__main__
'
],
'
fuc
'
)
print
(ret)
#
ret()
#
abc123...
getattr(sys.modules[
'
__main__
'
],
'
fuc
'
)()
#
abc123...
3.setattr()
用于设置属性值,该属性不一定是存在的
class
Person:
age
= 20
def
__init__
(self,name,height,weight):
self.name
=
name
self.height
=
height
self.weight
=
weight
#
对一个对象修改
p = Person(
'
Adson
'
,1.6,75
)
setattr(p,
'
name
'
,
'
Jane
'
)
setattr(p,
'
height
'
,1.7
)
setattr(p,
'
gender
'
,
'
male
'
)
print
(p.
__dict__
)
#
{'name': 'Jane', 'height': 1.7, 'weight': 75, 'gender': 'male'}
#
对一个类修改
print
(Person.
__dict__
)
#
{'__module__': '__main__', 'age': 20, '__init__':
,
'__dict__':
, '__weakref__':
, '__doc__': None}
setattr(Person,
'
age
'
,21
)
setattr(Person,
'
name
'
,
'
Jane
'
)
setattr(Person,
'
height
'
,1.7
)
setattr(Person,
'
gender
'
,
'
male
'
)
print
(Person.
__dict__
)
#
{'__module__': '__main__', 'age': 21, '__init__':
,
'__dict__':
, '__weakref__':
, '__doc__': None,
'name': 'Jane', 'height': 1.7, 'gender': 'male'}
这里的不同之处在于对象和类它们存放值的命名空间不同
4.delattr()
用于删除属性
class
Person:
age
= 20
def
__init__
(self,name,height,weight):
self.name
=
name
self.height
=
height
self.weight
=
weight
p
= Person(
'
Adson
'
,1.6,75
)
print
(p.
__dict__
)
#
{'name': 'Adson', 'height': 1.6, 'weight': 75}
delattr(p,
'
height
'
)
print
(p.
__dict__
)
#
{'name': 'Adson', 'weight': 75}
print
(Person.
__dict__
[
'
age
'
])
#
20
delattr(Person,
'
age
'
)
print
(Person.
__dict__
[
'
age
'
])
#
KeyError: 'age'
内置类方法
内置的类方法和内置函数之间有着千丝万缕的关系
1.__str__
当我们定义一个类,并实例化一个对象,再对这个对象去print
class
A:
def
__init__
(self,name,price,types):
self.name
=
name
self.price
=
price
self.types
=
types
a
= A(
'
AAA
'
,200,
'
A
'
)
print
(str(a))
#
<__main__.A object at 0x00000000020D7A58>
这里返回了这个对象的内存地址,我们再在A类里面添加一个__str__方法,看一看结果是什么
class
A:
def
__init__
(self,name,price,types):
self.name
=
name
self.price
=
price
self.types
=
types
def
__str__
(self):
return
'
name = %s,price = %s,types = %s
'
%
(self.name,self.price,self.types)
a
= A(
'
AAA
'
,200,
'
A
'
)
print
(a)
#
name = AAA,price = 200,types = A
可以这么说我们在每次打印一个对象的时候就是在调用obj.__str__,且__str__方法需要返回一个字符串,当做这个类的描写;当我们使用print这个对象时会打印出__str__方法return出来的字符串
2.__repr__
先说一下repr()方法,它能让我们输入的数据原形毕露
print
(repr(1))
#
1
print
(repr(
'
1
'
))
#
'1'
print
(repr(
'
aaa
'
))
#
'aaa'
print
(repr({
'
a
'
:1,
'
b
'
:2}))
#
{'a': 1, 'b': 2}
和__str__一样我们在定义一个类后去print它实例化的对象,会获得到一个对象的内存地址
class
A:
def
__init__
(self,name,price,types):
self.name
=
name
self.price
=
price
self.types
=
types
a = A(
'
AAA
'
,200,
'
A
'
)
print
(repr(a))
#
<__main__.A object at 0x00000000024E7A58>
然后我们再在A中添加__repr__方法看一下print的结果
class
A:
def
__init__
(self,name,price,types):
self.name
=
name
self.price
=
price
self.types
=
types
def
__repr__
(self):
return
'
name = %s,price = %s,types = %s
'
%
(self.name, self.price, self.types)
a
= A(
'
AAA
'
,200,
'
A
'
)
print
(repr(a))
#
name = AAA,price = 200,types = A
print
(a)
#
name = AAA,price = 200,types = A
因为我们在类中定义了一个__repr__方法,这里我们print对象a的时候就相当于是调用了里面的__repr__方法即a.__repr__
如果一个类中的__str__和__repr__同时存在的话,那么最后的打印结果是什么呢?
class
A:
def
__init__
(self,name,price,types):
self.name
=
name
self.price
=
price
self.types
=
types
def
__str__
(self):
return
'
str(name = %s,price = %s,types = %s)
'
%
(self.name,self.price,self.types)
def
__repr__
(self):
return
'
repr(name = %s,price = %s,types = %s)
'
%
(self.name, self.price, self.types)
a
= A(
'
AAA
'
,200,
'
A
'
)
print
(repr(a))
#
repr(name = AAA,price = 200,types = A) 即a.__repr__
print
(
'
%r
'
%a)
#
repr(name = AAA,price = 200,types = A)
print
(str(a))
#
str(name = AAA,price = 200,types = A) 即a.__str__
print
(
'
%s
'
%a)
#
str(name = AAA,price = 200,types = A)
print
(a)
#
str(name = AAA,price = 200,types = A)
如果一个类中 有 __str__方法,那么它就会先找__str__, 没有 的话就再找__repr__方法,再 没有 的话就会找它父类的__str__方法
__str__方法和__repr__方法能够返回该对象一个规范化的信息
3.__len__
我们将一个实例化的对象直接print它的len看一看会出现什么结果
class
A:
def
__init__
(self,name,price,types):
self.name
=
name
self.price
=
price
self.types
=
types
a = A(
'
AAA
'
,200,
'
A
'
)
print
(len(a))
#
TypeError: object of type 'A' has no len()
结果报错说A少了一个len函数,也就是我们只有在A中加上一个__len__的方法才能去计算长度相关的东西
计算属性的长度:
class
A:
def
__init__
(self,name,price,types):
self.name
=
name
self.price
=
price
self.types
=
types
def
__len__
(self):
return
len(self.name)
a
= A(
'
AAA
'
,200,
'
A
'
)
print
(len(a))
#
3
计算一个列表属性有几个元素:
class
A:
def
__init__
(self,goods =
[]):
self.goods
=
[]
def
__len__
(self):
return
len(self.goods)
a
=
A()
print
(len(a))
#
0
a.goods.append(
'
Banana
'
)
a.goods.append(
'
Apple
'
)
a.goods.append(
'
Orange
'
)
a.goods.append(
'
Pear
'
)
print
(len(a))
#
4
4.__call__
用于打印这个对象的属性
class
A:
gender
=
'
male
'
def
__init__
(self,name,price,types):
self.name
=
name
self.price
=
price
self.types
=
types
def
__call__
(self, *args, **
kwargs):
return
self.name,self.price,self.types,self.gender
a
= A(
'
AAA
'
,200,
'
A
'
)
print
(a())
#
('AAA', 200, 'A', 'male')
print
(A(
'
AAA
'
,200,
'
A
'
)())
#
('AAA', 200, 'A', 'male')
5.__eq__
class
A:
__instance
=
False
def
__init__
(self,name,age,height):
self.name
=
name
self.age
=
age
self.height
=
height
def
__eq__
(self, other):
if
self.name == other.name
and
self.height ==
other.height:
return
True
else
:
return
False
a1
= A(
'
Jane
'
,20,55
)
a2
= A(
'
Jane
'
,18,55
)
print
(a1 == a2)
#
True
6.__hash__
控制对象中的哈希值和另外一个对象的哈希值是否相等
class
A:
def
__init__
(self,name,age,height):
self.name
=
name
self.age
=
age
self.height
=
height
def
__hash__
(self):
return
hash(self.age + self.height) +
hash(self.name)
a1
= A(
'
Jane
'
,20,55
)
a2
= A(
'
Jane
'
,18,55
)
print
(hash(a1))
#
-1393240518857837779
print
(hash(a2))
#
-1393240518857837781
7.__new__
创建一个对象
class
A:
height
= 18
def
__init__
(self):
self.name
=
'
Aane
'
self.price
= 300
self.types
=
'
aaa
'
def
__new__
(cls, *args, **
kwargs):
print
(
'
实例化一个对象...
'
)
return
object.
__new__
(cls, *args, **
kwargs)
a
= A()
#
实例化一个对象...
print
(a.
__dict__
)
#
{'name': 'Aane', 'price': 300, 'types': 'aaa'}
单例模式:限制一个类始终只有一个实例,因为一般来讲一个类可以产生无数个对象
在这里我们创建三个对象并打印它们的内存地址可以发现它们是不同的
class
A:
def
__init__
(self):
self.name
=
'
aaa
'
a1
=
A()
a2
=
A()
a3
=
A()
print
(a1)
#
<__main__.A object at 0x00000000025B1D68>
print
(a2)
#
<__main__.A object at 0x00000000025CD0F0>
print
(a3)
#
<__main__.A object at 0x00000000025CD128>
所以在我们第一次实例化这个类的时候就创建一个实例化的对象,那么我们再一次实例化一个对象的话该如何再去使用之前的实例化对象呢?
class
A:
__instance
=
False
def
__init__
(self,name,age):
self.name
=
name
self.age
=
age
def
__new__
(cls,*args,**
kwargs):
if
cls.
__instance
:
return
cls.
__instance
cls.
__instance
= object.
__new__
(A)
return
cls.
__instance
a1
= A(
'
Jogn
'
,33
)
a2
= A(
'
Jane
'
,35
)
a3
= A(
'
KKK
'
,55
)
print
(a1)
#
<__main__.A object at 0x000000000217D198>
print
(a1.
__dict__
)
#
{'name': 'KKK', 'age': 55}
print
(a2)
#
<__main__.A object at 0x000000000217D198>
print
(a2.
__dict__
)
#
{'name': 'KKK', 'age': 55}
print
(a3)
#
<__main__.A object at 0x000000000217D198>
print
(a3.
__dict__
)
#
{'name': 'KKK', 'age': 55}
print
(id(a1),id(a2),id(a3))
#
41734552 41734552 41734552
8.__del__
析构函数:当对象结束其生命周期,如对象所在的函数已调用完毕时,系统自动执行析构函数,它往往用来做"清理善后"的工作。当我们直接删除一个实例化的对象再去打印它,就会报错告诉我们这个对象已经不存在了
class
A:
def
__init__
(self,name,price,types):
self.name
=
name
self.price
=
price
self.types
=
types
a
= A(
'
AAA
'
,200,
'
A
'
)
del
a
print
(a)
#
NameError: name 'a' is not defined
我们再在A中添加一个__del__方法
class
A:
def
__init__
(self,name,price,types):
self.name
=
name
self.price
=
price
self.types
=
types
def
__del__
(self):
print
(
'
这个对象%s已被删除!
'
%
self.name)
del
self
a
= A(
'
AAA
'
,200,
'
A
'
)
del
a
#
这个对象AAA已被删除! 这里相当于调用了a.__dict__
print
(a)
#
NameError: name 'a' is not defined
8.__getitem__
模拟字典的方式来拿值
class
A:
gender
=
'
male
'
def
__init__
(self,name,price,types):
self.name
=
name
self.price
=
price
self.types
=
types
def
__getitem__
(self, item):
if
hasattr(self,item):
return
getattr(self,item)
return
'
没有找到这个值!
'
a
= A(
'
AAA
'
,200,
'
A
'
)
print
(a[
'
name
'
])
#
AAA
print
(a[
'
price
'
])
#
200
print
(a[
'
types
'
])
#
A
print
(a[
'
gender
'
])
#
male
print
(a[
'
sex
'
])
#
没有找到这个值!
9.__setitem__
模拟字典的方式来设值
class
A:
def
__init__
(self,name,price,types):
self.name
=
name
self.price
=
price
self.types
=
types
def
__setitem__
(self,key,value):
#
重新设定一个新的值
self.
__dict__
[
'
key
'
] =
value
a
= A(
'
AAA
'
,200,
'
A
'
)
print
(a.
__dict__
)
#
{'name': 'AAA', 'price': 200, 'types': 'A'}
a.
__dict__
[
'
name
'
] =
'
BBB
'
a.
__dict__
[
'
price
'
] = 300
a.
__dict__
[
'
types
'
] =
'
C
'
a.
__dict__
[
'
gender
'
] =
'
male
'
#
增加了一个新的属性gender
print
(a.
__dict__
)
#
{'name': 'BBB', 'price': 300, 'types': 'C', 'gender': 'male'}
10.__delitem__
模拟字典的方式来删除
class
A:
gender
=
'
male
'
def
__init__
(self,name,price,types):
self.name
=
name
self.price
=
price
self.types
=
types
def
__delitem__
(self, key):
print
(
'
%s已删除!
'
%
key)
del
self.
__dict__
[key]
a
= A(
'
AAA
'
,200,
'
A
'
)
del
a[
'
name
'
]
#
name已删除!
del
a[
'
price
'
]
#
price已删除!
print
(a.
__dict__
)
#
{'types': 'A'}
问题总结
1.有很多对象,它们的姓名和性别相同但是年龄不同,如何这种情况的对象去重?
class
A:
def
__init__
(self,name,sex,age):
self.name
=
name
self.sex
=
sex
self.age
=
age
def
__eq__
(self, other):
if
self.name == other.name
and
self.sex ==
other.sex:
return
True
return
False
def
__hash__
(self):
return
hash(self.name+
self.sex)
a
= A(
'
Json
'
,
'
male
'
,26
)
b
= A(
'
Json
'
,
'
male
'
,30
)
print
(set((a,b)))
#
set()依赖对象的 __eq__和__hash__ {<__main__.A object at 0x0000000002761DD8>}
2.扑克牌问题
import
json
from
collections
import
namedtuple
Card
= namedtuple(
'
Card
'
,[
'
rank
'
,
'
suit
'
])
#
rank牌面的大小 suit牌面的花色
class
FrenchDeck:
ranks
= [str(n)
for
n
in
range(2,11)] + list(
'
JQKA
'
)
suits
= [
'
红心
'
,
'
方块
'
,
'
梅花
'
,
'
黑桃
'
]
def
__init__
(self):
self._cards
= [Card(rank,suit)
for
rank
in
FrenchDeck.ranks
for
suit
in
FrenchDeck.suits]
def
__len__
(self):
return
len(self._cards)
def
__getitem__
(self, item):
return
self._cards[item]
def
__setitem__
(self,key,value):
self._cards[key]
=
value
def
__str__
(self):
return
json.dumps(self._cards,ensure_ascii=
False)
deck
=
FrenchDeck()
print
(deck[10])
#
Card(rank='4', suit='梅花')
from
random
import
choice
print
(choice(deck))
#
Card(rank='3', suit='方块')
print
(choice(deck))
#
Card(rank='9', suit='方块')
from
random
import
shuffle
shuffle(deck)
print
(deck[10])
#
Card(rank='2', suit='方块')
print
(deck)
#
打印所有牌色
print
(deck[:5])
#
[Card(rank='6', suit='梅花'), Card(rank='3', suit='方块'), Card(rank='10', suit='红心'),
#Card(rank='9', suit='红心'), Card(rank='4', suit='方块')]

