Spark学习实例(Python):RDD、DataFrame、DataSet

系统 1593 0

在学习转换之前先了解以下它们的基本概念

  • RDD:弹性分布式数据集,是一个只读分区集合
  • DataFrame:以命名列方式组织的分布式数据集,概念上和关系型数据库的一张表一样
  • DataSet:分布式数据集合, Python暂时不支持

了解了基本的概念之后,接下来我们通过代码编写三种数据集的形成

RDD的形成

            
              from pyspark.sql import SparkSession

if __name__ == '__main__':
    spark = SparkSession \
        .builder \
        .appName("rddData") \
        .master("local[*]") \
        .getOrCreate()
    # 方式一:
    data = [1, 2, 3, 4, 5]
    rdd1 = spark.sparkContext.parallelize(data)
    print(rdd1.collect())
    # [1, 2, 3, 4, 5]
    # 方式二:
    rdd2 = spark.sparkContext.textFile("/home/llh/data/people.txt")
    print(rdd2.collect())
    # ['Jack 27', 'Rose 24', 'Andy 32']
    spark.stop()
            
          

DataFrame的形成

            
              from pyspark.sql import SparkSession

if __name__ == '__main__':
    spark = SparkSession \
        .builder \
        .appName("rddDataFrame") \
        .master("local[*]") \
        .getOrCreate()
    df = spark.read.text("/home/llh/data/people.txt")
    df.show()
    # +---+----+
    # |age|name|
    # +---+----+
    # | 27|Jack|
    # | 24|Rose|
    # | 32|Andy|
    # +---+----+
    spark.stop()
            
          

RDD转成DataFrame

            
              from pyspark.sql import SparkSession
from pyspark.sql import Row

if __name__ == '__main__':
    spark = SparkSession \
        .builder \
        .appName("rddRDD") \
        .master("local[*]") \
        .getOrCreate()
    data = [1, 2, 3]
    rdd1 = spark.sparkContext.parallelize(data)
    print(rdd1.collect())
    # [1, 2, 3]
    # rdd ->  dataframe
    rdd2 = rdd1.map(lambda x: Row(x))
    df = spark.createDataFrame(rdd2, schema=['num'])
    df.show()
    # +---+
    # |num|
    # +---+
    # | 1 |
    # | 2 |
    # | 3 |
    # +---+
    spark.stop()
            
          

DataFrame转成RDD

            
              from pyspark.sql import SparkSession

if __name__ == '__main__':
    spark = SparkSession \
        .builder \
        .appName("rddDataFrame") \
        .master("local[*]") \
        .getOrCreate()
    df = spark.read.text("/home/llh/data/people.txt")
    rdd = df.rdd
    print(rdd.collect())
    # [Row(value='Jack 27'), Row(value='Rose 24'), Row(value='Andy 32')]
    spark.stop()
            
          

以上就是RDD与DataFrame形成与相互转换

 

Spark学习目录:

  • Spark学习实例1(Python):单词统计 Word Count
  • Spark学习实例2(Python):加载数据源Load Data Source
  • Spark学习实例3(Python):保存数据Save Data
  • Spark学习实例4(Python):RDD转换 Transformations
  • Spark学习实例5(Python):RDD执行 Actions
  • Spark学习实例6(Python):共享变量Shared Variables
  • Spark学习实例7(Python):RDD、DataFrame、DataSet相互转换
  • Spark学习实例8(Python):输入源实时处理 Input Sources Streaming
  • Spark学习实例9(Python):窗口操作 Window Operations

 

 


更多文章、技术交流、商务合作、联系博主

微信扫码或搜索:z360901061

微信扫一扫加我为好友

QQ号联系: 360901061

您的支持是博主写作最大的动力,如果您喜欢我的文章,感觉我的文章对您有帮助,请用微信扫描下面二维码支持博主2元、5元、10元、20元等您想捐的金额吧,狠狠点击下面给点支持吧,站长非常感激您!手机微信长按不能支付解决办法:请将微信支付二维码保存到相册,切换到微信,然后点击微信右上角扫一扫功能,选择支付二维码完成支付。

【本文对您有帮助就好】

您的支持是博主写作最大的动力,如果您喜欢我的文章,感觉我的文章对您有帮助,请用微信扫描上面二维码支持博主2元、5元、10元、自定义金额等您想捐的金额吧,站长会非常 感谢您的哦!!!

发表我的评论
最新评论 总共0条评论