题意: 求一条直线分凸包两边的面积。
解法: 因为题意会说一定穿过,那么不会有直线与某条边重合的情况。我们只要找到一个直线分成的凸包即可,另一个的面积等于总面积减去那个的面积。
怎么得到分成的一个凸包呢?
从0~n扫过去,如果扫到的边与直线不相交,那么把端点加进新凸包中,如果直线与扫到的边相交了,那么就将交点加入新凸包,然后以后不相交的话也不加入点到新凸包中,直到遇到下一个与直线相交的边,则把交点又加入新凸包,然后在扫到末尾加入点。这样就得到了。
即找到如图:
注意四舍五入。
代码:

#include <iostream> #include <cstdio> #include <cstring> #include <cstdlib> #include <cmath> #include <algorithm> #define eps 1e-8 using namespace std; struct Point{ double x,y; Point( double x= 0 , double y= 0 ):x(x),y(y) {} void input() { scanf( " %lf%lf " ,&x,& y); } }; typedef Point Vector; int dcmp( double x) { if (x < -eps) return - 1 ; if (x > eps) return 1 ; return 0 ; } template < class T> T sqr(T x) { return x * x;} Vector operator + (Vector A, Vector B) { return Vector(A.x + B.x, A.y + B.y); } Vector operator - (Vector A, Vector B) { return Vector(A.x - B.x, A.y - B.y); } Vector operator * (Vector A, double p) { return Vector(A.x*p, A.y* p); } Vector operator / (Vector A, double p) { return Vector(A.x/p, A.y/ p); } bool operator < ( const Point& a, const Point& b) { return a.x < b.x || (a.x == b.x && a.y < b.y); } bool operator >= ( const Point& a, const Point& b) { return a.x >= b.x && a.y >= b.y; } bool operator <= ( const Point& a, const Point& b) { return a.x <= b.x && a.y <= b.y; } bool operator == ( const Point& a, const Point& b) { return dcmp(a.x-b.x) == 0 && dcmp(a.y-b.y) == 0 ; } double Dot(Vector A, Vector B) { return A.x*B.x + A.y* B.y; } double Length(Vector A) { return sqrt(Dot(A, A)); } double Cross(Vector A, Vector B) { return A.x*B.y - A.y* B.x; } Point DisP(Point A,Point B) { return Length(B- A); } bool SegmentIntersection(Point A,Point B,Point C,Point D) { return max(A.x,B.x) >= min(C.x,D.x) && max(C.x,D.x) >= min(A.x,B.x) && max(A.y,B.y) >= min(C.y,D.y) && max(C.y,D.y) >= min(A.y,B.y) && dcmp(Cross(C -A,B-A)*Cross(D-A,B-A)) <= 0 && dcmp(Cross(A -C,D-C)*Cross(B-C,D-C)) <= 0 ; } void SegIntersectionPoint(Point& P,Point a,Point b,Point c,Point d) { // 需保证ab,cd相交 P.x = (Cross(d-a,b-a)*c.x - Cross(c-a,b-a)*d.x)/(Cross(d-a,b-a)-Cross(c-a,b- a)); P.y = (Cross(d-a,b-a)*c.y - Cross(c-a,b-a)*d.y)/(Cross(d-a,b-a)-Cross(c-a,b- a)); } double CalcConvexArea(Point* p, int n) { double area = 0.0 ; for ( int i= 1 ;i<n- 1 ;i++ ) area += Cross(p[i]-p[ 0 ],p[i+ 1 ]-p[ 0 ]); return fabs(area* 0.5 ); } Point p[ 25 ],ch[ 25 ]; Point P,A,B; int main() { int n,i,m; while (scanf( " %d " ,&n)!=EOF && n) { for (i= 0 ;i<n;i++ ) p[i].input(); A.input(), B.input(); Point tmpA = B+(A-B)* 20003 , tmpB = A+(B-A)* 20003 ; A = tmpA, B = tmpB; double Total = CalcConvexArea(p,n); int tot = 0 , fir = 0 , add = 0 ; ch[tot ++] = p[ 0 ]; for (i= 0 ;i<n;i++ ) { Point C = p[i], D = p[(i+ 1 )% n]; if (SegmentIntersection(A,B,C,D)) { SegIntersectionPoint(P,A,B,C,D); ch[tot ++] = P; if (!fir) fir = 1 ; else fir = 0 , add = 1 ; if (P == D) i++ ; } else if (!fir) ch[tot++] = p[(i+ 1 )% n]; if (add) ch[tot++] = p[(i+ 1 )% n]; } double Now = CalcConvexArea(ch,tot); double Other = Total- Now; int N = ( int )(Now+ 0.5 ), O = ( int )(Other+ 0.5 ); if (O > N) swap(N,O); printf( " %d %d\n " ,N,O); } return 0 ; }