Anti-prime Sequences 
  
  
  | Time Limit: 3000MS | Memory Limit: 30000K | |
| Total Submissions: 2175 | Accepted: 1022 | 
Description
    
    Given a sequence of consecutive integers n,n+1,n+2,...,m, an anti-prime sequence is a rearrangement of these integers so that each adjacent pair of integers sums to a composite (non-prime) number. For example, if n = 1 and m = 10, one such anti-prime sequence is 1,3,5,4,2,6,9,7,8,10. This is also the lexicographically first such sequence.  
   
    
    
We can extend the definition by defining a degree danti-prime sequence as one where all consecutive subsequences of length 2,3,...,d sum to a composite number. The sequence above is a degree 2 anti-prime sequence, but not a degree 3, since the subsequence 5, 4, 2 sums to 11. The lexicographically .rst degree 3 anti-prime sequence for these numbers is 1,3,5,4,6,2,10,8,7,9.
  We can extend the definition by defining a degree danti-prime sequence as one where all consecutive subsequences of length 2,3,...,d sum to a composite number. The sequence above is a degree 2 anti-prime sequence, but not a degree 3, since the subsequence 5, 4, 2 sums to 11. The lexicographically .rst degree 3 anti-prime sequence for these numbers is 1,3,5,4,6,2,10,8,7,9.
Input
    
    Input will consist of multiple input sets. Each set will consist of three integers, n, m, and d on a single line. The values of n, m and d will satisfy 1 <= n < m <= 1000, and 2 <= d <= 10. The line 0 0 0 will indicate end of input and should not be processed. 
  
  
  Output
    
    For each input set, output a single line consisting of a comma-separated list of integers forming a degree danti-prime sequence (do not insert any spaces and do not split the output over multiple lines). In the case where more than one anti-prime sequence exists, print the lexicographically first one (i.e., output the one with the lowest first value; in case of a tie, the lowest second value, etc.). In the case where no anti-prime sequence exists, output  
   
    
    
No anti-prime sequence exists.
  No anti-prime sequence exists.
Sample Input
    1 10 2
1 10 3
1 10 5
40 60 7
0 0 0
  
  Sample Output
    1,3,5,4,2,6,9,7,8,10
1,3,5,4,6,2,10,8,7,9
No anti-prime sequence exists.
40,41,43,42,44,46,45,47,48,50,55,53,52,60,56,49,51,59,58,57,54
    
    
    
    题意:求n到m的数中任意连续2到d的数的和是合数
    
    
    DFS
  
  
      #include<stdio.h>
      
        
#include
      
      <
      
        string
      
      .h>
      
        
#include
      
      <math.h>
      
        const
      
      
        int
      
       MAXN=
      
        10001
      
      
        ;
      
      
        int
      
      
         n,m,d;
      
      
        int
      
      
         vis[MAXN];
      
      
        int
      
      
         num[MAXN];
      
      
        int
      
      
         pri[MAXN];
      
      
        int
      
      
         ans;
      
      
        int
      
      
         flag;
      
      
        void
      
      
         init ()
{
    memset(pri,
      
      
        0
      
      ,
      
        sizeof
      
      
        (pri));
    pri[
      
      
        0
      
      ] = pri[
      
        1
      
      ] = 
      
        1
      
      
        ;
    
      
      
        for
      
       ( 
      
        int
      
       i = 
      
        2
      
      ; i <= 
      
        100
      
      ; i++
      
         )
    {
        
      
      
        if
      
       ( pri[i] ) 
      
        continue
      
      
        ;
        
      
      
        for
      
       ( 
      
        int
      
       j = 
      
        2
      
      ; i * j < 
      
        10001
      
      ; j++
      
         )//这里错了
            pri[i
      
      *j] = 
      
        1
      
      
        ;
    }
}
      
      
        bool
      
       judge(
      
        int
      
       t,
      
        int
      
      
         step)
{
    num[step]
      
      =
      
        t;
    
      
      
        if
      
      (step>
      
        0
      
      
        )
    {
        ans
      
      =
      
        0
      
      
        ;
        
      
      
        int
      
       judge=
      
        0
      
      
        ;
        
      
      
        for
      
      (
      
        int
      
       j=step; j>=step-d+
      
        1
      
      ; j--
      
        )
        {
            ans
      
      +=
      
        num[j];
            
      
      
        if
      
      (judge==
      
        1
      
       && pri[ans]==
      
        0
      
      
        )
            {
                
      
      
        return
      
      
        false
      
      
        ;
            }
            judge
      
      =
      
        1
      
      
        ;
            
      
      
        if
      
      (j==
      
        0
      
      ) 
      
        break
      
      
        ;
        }
    }
    
      
      
        return
      
      
        true
      
      
        ;
}
      
      
        void
      
       DFS(
      
        int
      
      
         step)
{
    
      
      
        int
      
      
         ans,i,t;
    
      
      
        if
      
      (flag) 
      
        return
      
      
         ;
    
      
      
        if
      
      (step==m-n+
      
        1
      
      )
      
        //
      
      
        已经找到了
      
      
            {
        flag
      
      =
      
        1
      
      
         ;
        
      
      
        return
      
      
         ;
    }
    
      
      
        for
      
      (i=n; i<=m; i++
      
        )
    {
        t
      
      =
      
        0
      
      
        ;
        
      
      
        if
      
      (flag) 
      
        return
      
      
         ;
        
      
      
        if
      
      (!vis[i] &&
      
         judge(i,step))
        {
            vis[i]
      
      =
      
        1
      
      
        ;
            DFS(step
      
      +
      
        1
      
      
        );
            vis[i]
      
      =
      
        0
      
      
        ;
        }
    }
}
      
      
        int
      
      
         main()
{
    
      
      
        int
      
      
         i,j;
    init();
    
      
      
        while
      
      (scanf(
      
        "
      
      
        %d%d%d
      
      
        "
      
      ,&n,&m,&
      
        d))
    {
        flag
      
      =
      
        0
      
      
        ;
        
      
      
        if
      
      (n==
      
        0
      
       && m==
      
        0
      
       && d==
      
        0
      
      )  
      
        break
      
      
        ;
        memset(vis,
      
      
        0
      
      ,
      
        sizeof
      
      
        (vis));
        DFS(
      
      
        0
      
      
        );
        
      
      
        if
      
      (!flag) printf(
      
        "
      
      
        No anti-prime sequence exists.
      
      
        "
      
      
        );
        
      
      
        else
      
      
        
        {
            
      
      
        for
      
      (i=
      
        0
      
      ; i<=m-n; i++
      
        )
                
      
      
        if
      
      (i==
      
        0
      
      ) printf(
      
        "
      
      
        %d
      
      
        "
      
      
        ,num[i]);
                
      
      
        else
      
       printf(
      
        "
      
      
        ,%d
      
      
        "
      
      
        ,num[i]);
        }
        printf(
      
      
        "
      
      
        \n
      
      
        "
      
      
        );
    }
    
      
      
        return
      
      
        0
      
      
        ;
}
      
    
  


 
					 
					