今天说的是选择排序,包括“直接选择排序”和“堆排序”。
话说上次“冒泡排序”被快排虐了,而且“快排”赢得了内库的重用,众兄弟自然眼红,非要找快排一比高下。
这不今天就来了两兄弟找快排算账。
1.直接选择排序:
先上图:
说实话,直接选择排序最类似于人的本能思想,比如把大小不一的玩具让三岁小毛孩对大小排个序,
那小孩首先会在这么多玩具中找到最小的放在第一位,然后找到次小的放在第二位,以此类推。。。。。。
,小孩子多聪明啊,这么小就知道了直接选择排序。羡慕中........
对的,小孩子给我们上了一课,
第一步: 我们拿80作为参照物(base),在80后面找到一个最小数20,然后将80跟20交换。
第二步: 第一位数已经是最小数字了,然后我们推进一步在30后面找一位最小数,发现自己最小,不用交换。
第三步:........
最后我们排序完毕。大功告成。
既然是来挑战的,那就5局3胜制。
比赛结果公布:
堆排序:
要知道堆排序,首先要了解一下二叉树的模型。
下图就是一颗二叉树,具体的情况我后续会分享的。
那么堆排序中有两种情况(看上图理解):
大根堆: 就是说父节点要比左右孩子都要大。
小根堆: 就是说父节点要比左右孩子都要小。
那么要实现堆排序,必须要做两件事情:
第一:构建大根堆。
首先上图:
首先这是一个无序的堆,那么我们怎样才能构建大根堆呢?
第一步: 首先我们发现,这个堆中有2个父节点(2,,3);
第二步: 比较2这个父节点的两个孩子(4,5),发现5大。
第三步: 然后将较大的右孩子(5)跟父节点(2)进行交换,至此3的左孩子堆构建完毕,
如图:
第四步: 比较第二个父节点(3)下面的左右孩子(5,1),发现左孩子5大。
第五步: 然后父节点(3)与左孩子(5)进行交换,注意,交换后,堆可能会遭到破坏,
必须按照以上的步骤一,步骤二,步骤三进行重新构造堆。
最后构造的堆如下:
第二:输出大根堆。
至此,我们把大根堆构造出来了,那怎么输出呢?我们做大根堆的目的就是要找出最大值,
那么我们将堆顶(5)与堆尾(2)进行交换,然后将(5)剔除根堆,由于堆顶现在是(2),
所以破坏了根堆,必须重新构造,构造完之后又会出现最大值,再次交换和剔除,最后也就是俺们
发现自己兄弟被别人狂殴, ,堆排序再也坐不住了,决定要和快排干一场。
同样,快排也不甘示弱,谁怕谁?
结果公布:
堆排序此时心里很尴尬,双双被KO,心里想,一定要捞回面子,一定要赢,
于是堆排序提出了求“前K大问题”。(就是在海量数据中找出前几大的数据),
快排一口答应,小意思,没问题。
双方商定,在2w随机数中找出前10大的数:
求前K大的输出结果:
最后堆排序赶紧拉着直接选择排序一路小跑了,因为求前K大问题已经不是他原本来的目的。
ps: 直接选择排序的时间复杂度为:O(n^2)
堆排序的时间复杂度:O(NlogN)