There are two sorted arrays A and B of size m and n respectively. Find the median of the two sorted arrays. The overall run time complexity should be O(log (m+n)).
Thoughts:
Find Kth smallest in two sorted arrays |
Solution 1:
public double findMedianSortedArrays(int A[], int B[]) { int m = A.length, n = B.length; if(((m+n)&1) == 1) {//m+n: odd return findKth(A, 0, m-1, B, 0, n-1, (m+n)/2); } else { return (findKth(A,0,m-1,B,0,n-1,(m+n)/2)+findKth(A,0,m-1,B,0,n-1,(m+n)/2-1))/2.0; } } public double findKth(int A[], int aStart, int aEnd, int B[], int bStart, int bEnd, int k) { int aLen = aEnd - aStart + 1; int bLen = bEnd - bStart + 1; if(aLen == 0) return B[bStart+k]; if(bLen == 0) return A[aStart+k]; if(k == 0) return Math.min(A[aStart], B[bStart]); int aMid = aLen*k/(aLen+bLen); int bMid = k-aMid-1; aMid += aStart; bMid += bStart; if(A[aMid] > B[bMid]) { k = k - (bMid - bStart + 1); aEnd = aMid; bStart = bMid + 1; } else { k = k - (aMid - aStart + 1); aStart = aMid + 1; bEnd = bMid; } return findKth(A, aStart, aEnd, B, bStart, bEnd, k); }
Complexity of code to find median of two sorted array with above algorithm is O(log (m+n)).
Soltion 2:
public double findMedianSortedArrays(int A[], int B[]) { int n = A.length; int m = B.length; // the following call is to make sure len(A) <= len(B). // yes, it calls itself, but at most once, shouldn't be // consider a recursive solution if (n > m) return findMedianSortedArrays(B, A); // now, do binary search int k = (n + m - 1) / 2; int l = 0, r = Math.min(k, n); // r is n, NOT n-1, this is important!! while (l < r) { int midA = (l + r) / 2; int midB = k - midA; if (A[midA] < B[midB]) l = midA + 1; else r = midA; } // after binary search, we almost get the median because it must be between // these 4 numbers: A[l-1], A[l], B[k-l], and B[k-l+1] // if (n+m) is odd, the median is the larger one between A[l-1] and B[k-l]. // and there are some corner cases we need to take care of. int a = Math.max(l > 0 ? A[l - 1] : Integer.MIN_VALUE, k - l >= 0 ? B[k - l] : Integer.MIN_VALUE); if (((n + m) & 1) == 1) return (double) a; // if (n+m) is even, the median can be calculated by // median = (max(A[l-1], B[k-l]) + min(A[l], B[k-l+1]) / 2.0 // also, there are some corner cases to take care of. int b = Math.min(l < n ? A[l] : Integer.MAX_VALUE, k - l + 1 < m ? B[k - l + 1] : Integer.MAX_VALUE); return (a + b) / 2.0; }
Solution 3:
int min(int a, int b) { return a > b ? b : a; } int find_kth(int a[], int b[], int size_a, int size_b, int k){ /* to maintain uniformaty, we will assume that size_a is smaller than size_b else we will swap array in call :) */ if(size_a > size_b) return find_kth(b, a, size_b, size_a, k); /* Now case when size of smaller array is 0 i.e there is no elemt in one array*/ if(size_a == 0) return b[k-1]; // due to zero based index /* case where K ==1 that means we have hit limit */ if(k == 1) return min(a[0], b[0]); /* Now the divide and conquer part */ int i = min(size_a, k/2) ; // K should be less than the size of array int j = min(size_b, k/2) ; // K should be less than the size of array if(a[i-1] > b[j-1]) // Now we need to find only K-j th element return find_kth(a, b+j, size_a, size_b-j, k-j); else return find_kth(a+i, b, size_a-i, size_b, k-i); return -1; } double findMedianSortedArrays(int a[], int size_a, int b[], int size_b) { int left = (size_a + size_b + 1) >>1; int right = (size_a + size_b + 2) >>1; return ( find_kth(a,b, size_a,size_b, left) + find_kth(a,b, size_a,size_b, right) )/2.0; }
References:
http://www.algorithmsandme.com/2014/12/find-median-of-two-sorted-arrays-of.html
http://www.algorithmsandme.com/2014/12/fins-kth-smallest-element-in-two-sorted.html
https://oj.leetcode.com/discuss/11174/share-my-iterative-solution-with-o-log-min-n-m