Color Me Less
Time Limit: 1000MS | Memory Limit: 10000K | |
Total Submissions: 15365 | Accepted: 7186 |
Description
A color reduction is a mapping from a set of discrete colors to a smaller one. The solution to this problem requires that you perform just such a mapping in a standard twenty-four bit RGB color space. The input consists of a target set of sixteen RGB color values, and a collection of arbitrary RGB colors to be mapped to their closest color in the target set. For our purposes, an RGB color is defined as an ordered triple (R,G,B) where each value of the triple is an integer from 0 to 255. The distance between two colors is defined as the Euclidean distance between two three-dimensional points. That is, given two colors (R1,G1,B1) and (R2,G2,B2), their distance D is given by the equation
Input
The input is a list of RGB colors, one color per line, specified as three integers from 0 to 255 delimited by a single space. The first sixteen colors form the target set of colors to which the remaining colors will be mapped. The input is terminated by a line containing three -1 values.
Output
For each color to be mapped, output the color and its nearest color from the target set.
If there are more than one color with the same smallest distance, please output the color given first in the color set.
If there are more than one color with the same smallest distance, please output the color given first in the color set.
Sample Input
0 0 0 255 255 255 0 0 1 1 1 1 128 0 0 0 128 0 128 128 0 0 0 128 126 168 9 35 86 34 133 41 193 128 0 128 0 128 128 128 128 128 255 0 0 0 1 0 0 0 0 255 255 255 253 254 255 77 79 134 81 218 0 -1 -1 -1
Sample Output
(0,0,0) maps to (0,0,0) (255,255,255) maps to (255,255,255) (253,254,255) maps to (255,255,255) (77,79,134) maps to (128,128,128) (81,218,0) maps to (126,168,9)
此题没有什么难点,注意比对最小欧式距离时的逻辑。
import java.util.*; public class Main { public static void main(String[] args) { Scanner cin = new Scanner(System.in); String[] str; int[][] target = new int[16][3]; int[] temp = new int[3]; int minIndex = 0; double minValue = -1; double tempValue = 0; for(int i = 0; i < 16; i++) { str = cin.nextLine().split(" "); target[i][0] = Integer.valueOf(str[0]).intValue(); target[i][1] = Integer.valueOf(str[1]).intValue(); target[i][2] = Integer.valueOf(str[2]).intValue(); } while(cin.hasNext()) { minIndex = 0; minValue = -1; tempValue = 0; str = cin.nextLine().split(" "); temp[0] = Integer.valueOf(str[0]).intValue(); temp[1] = Integer.valueOf(str[1]).intValue(); temp[2] = Integer.valueOf(str[2]).intValue(); if(temp[0]==-1 && temp[1]==-1 && temp[2]==-1) break; for(int i = 0; i < 16; i++) { tempValue = getEuclideanD(temp, target[i]); if(tempValue == 0) { minValue = tempValue; minIndex = i; break; } if(minValue == -1) { minValue = tempValue; minIndex = 0; continue; } if(minValue > tempValue) { minValue = tempValue; minIndex = i; } } System.out.println( "("+temp[0]+","+temp[1]+","+temp[2]+ ") maps to "+ "("+target[minIndex][0]+","+ target[minIndex][1]+","+ target[minIndex][2]+")"); } } private static double getEuclideanD(int[] p1, int[] p2) { double value = 0; value = Math.sqrt(Math.pow((p2[0]-p1[0]), 2) + Math.pow((p2[1]-p1[1]), 2) + Math.pow((p2[2]-p1[2]), 2)); return value; } }