海量数据处理之Bloom Filter详解

系统 1519 0

海量数据处理之Bloom Filter详解

前言

本博客内曾已经整理过 十道海量数据处理面试题与十个方法大总结 。接下来,本博客内会重点分析那些海量数据处理的方法,并重写十道海量数据处理的面试题。如果有任何问题,欢迎不吝指正。谢谢。

一、什么是Bloom Filter

Bloom Filter 是一种空间效率很高的随机数据结构,它利用位数组很简洁地表示一个集合,并能判断一个元素是否属于这个集合。 Bloom Filter 的这种高效是有一定代价的:在判断一个元素是否属于某个集合时,有可能会把不属于这个集合的元素误认为属于这个集合( false positive )。因此, Bloom Filter 不适合那些“零错误”的应用场合。而在能容忍低错误率的应用场合下, Bloom Filter 通过极少的错误换取了存储空间的极大节省。

有人可能想知道它的中文叫法,倒是有被译作称布隆过滤器。该不该译,译的是否恰当,由诸君品之。下文之中,如果有诸多公式不慎理解,也无碍,只作稍稍了解即可。

1.1、集合表示和元素查询

下面我们具体来看 Bloom Filter 是如何用位数组表示集合的。初始状态时, Bloom Filter 是一个包含 m 位的位数组,每一位都置为 0

为了表达 S={x 1 , x 2 ,…,x n } 这样一个 n 个元素的集合, Bloom Filter 使用 k 个相互独立的哈希函数( Hash Function ),它们分别将集合中的每个元素映射到 {1,…,m} 的范围中。对任意一个元素 x ,第 i 个哈希函数映射的位置 h i (x) 就会被置为 1 1 i k )。注意,如果一个位置多次被置为 1 ,那么只有第一次会起作用,后面几次将没有任何效果。在下图中, k=3 ,且有两个哈希函数选中同一个位置(从左边数第五位,即第二个“1“处)。

在判断 y 是否属于这个集合时,我们对 y 应用 k 次哈希函数,如果所有 h i (y) 的位置都是 1 1 i k ),那么我们就认为 y 是集合中的元素,否则就认为 y 不是集合中的元素。下图中 y 1 就不是集合中的元素(因为y1有一处指向了“0”位)。 y 2 或者属于这个集合,或者刚好是一个 false positive

1.2、错误率估计

前面我们已经提到了, Bloom Filter 在判断一个元素是否属于它表示的集合时会有一定的错误率( false positive rate ),下面我们就来估计错误率的大小。在估计之前为了简化模型,我们假设 kn<m 且各个哈希函数是完全随机的。当集合 S={x 1 , x 2 ,…,x n } 的所有元素都被 k 个哈希函数映射到 m 位的位数组中时,这个位数组中某一位还是 0 的概率是:

其中 1/m 表示任意一个哈希函数选中这一位的概率(前提是哈希函数是完全随机的), (1-1/m) 表示哈希一次没有选中这一位的概率。要把 S 完全映射到位数组中,需要做 kn 次哈希。某一位还是 0 意味着 kn 次哈希都没有选中它,因此这个概率就是( 1-1/m )的 kn 次方。令 p = e -kn/m 是为了简化运算,这里用到了计算e时常用的近似:

令ρ为位数组中 0 的比例,则ρ的数学期望E(ρ)= p’ 。在ρ已知的情况下,要求的错误率( false positive rate )为:

(1- ρ)为位数组中 1 的比例, (1- ρ) k 就表示 k 次哈希都刚好选中 1 的区域,即 false positive rate 。上式中第二步近似在前面已经提到了,现在来看第一步近似。 p’ 只是ρ的数学期望,在实际中ρ的值有可能偏离它的数学期望值。 M. Mitzenmacher 已经证明 [2] ,位数组中0的比例非常集中地分布在它的数学期望值的附近。因此,第一步的近似得以成立。分别将 p p’ 代入上式中,得:

相比 p’ f’ ,使用 p f 通常在分析中更为方便。

1.3、最优的哈希函数个数

既然 Bloom Filter 要靠多个哈希函数将集合映射到位数组中,那么应该选择几个哈希函数才能使元素查询时的错误率降到最低呢?这里有两个互斥的理由:如果哈希函数的个数多,那么在对一个不属于集合的元素进行查询时得到 0 的概率就大;但另一方面,如果哈希函数的个数少,那么位数组中的 0 就多。为了得到最优的哈希函数个数,我们需要根据上一小节中的错误率公式进行计算。

先用 p f 进行计算。注意到 f = exp(k ln(1 − e −kn/m )) ,我们令 g = k ln(1 − e −kn/m ) ,只要让 g 取到最小, f 自然也取到最小。由于 p = e -kn/m ,我们可以将 g 写成

根据对称性法则可以很容易看出当 p = 1/2 ,也就是 k = ln2· (m/n) 时, g 取得最小值。在这种情况下,最小错误率 f 等于 (1/2) k (0.6185) m/n 。另外,注意到p是位数组中某一位仍是0的概率,所以 p = 1/2 对应着位数组中0和1各一半。换句话说,要想保持错误率低,最好让位数组有一半还空着。

需要强调的一点是, p = 1/2 时错误率最小这个结果并不依赖于近似值 p f 。同样对于 f’ = exp(k ln(1 − (1 − 1/m) kn )) g’ = k ln(1 − (1 − 1/m) kn ) p’ = (1 − 1/m) kn ,我们可以将 g’ 写成

同样根据对称性法则可以得到当 p’ = 1/2 时, g’ 取得最小值。

1.4、位数组的大小

下面我们来看看,在不超过一定错误率的情况下, Bloom Filter 至少需要多少位才能表示全集中任意 n 个元素的集合。假设全集中共有 u 个元素,允许的最大错误率为 є ,下面我们来求位数组的位数 m

假设 X 为全集中任取 n 个元素的集合, F(X) 是表示 X 的位数组。那么对于集合 X 中任意一个元素 x ,在 s = F(X) 中查询 x 都能得到肯定的结果,即 s 能够接受 x 。显然,由于 Bloom Filter 引入了错误, s 能够接受的不仅仅是 X 中的元素,它还能够 є (u - n) false positive 。因此,对于一个确定的位数组来说,它能够接受总共 n + є (u - n) 个元素。在 n + є (u - n) 个元素中, s 真正表示的只有其中 n 个,所以一个确定的位数组可以表示

个集合。 m 位的位数组共有 2 m 个不同的组合,进而可以推出, m 位的位数组可以表示

个集合。全集中 n 个元素的集合总共有

个,因此要让 m 位的位数组能够表示所有 n 个元素的集合,必须有

即:

上式中的近似前提是 n єu 相比很小,这也是实际情况中常常发生的。根据上式,我们得出结论:在错误率不大于 є 的情况下, m 至少要等于 n log 2 (1/є) 才能表示任意 n 个元素的集合。

上一小节中我们曾算出当 k = ln2· (m/n) 时错误率 f 最小,这时 f = (1/2) k = (1/2) mln2 / n 。现在令 f є ,可以推出

这个结果比前面我们算得的下界 n log 2 (1/є) 大了 log 2 e 1.44 倍。这说明在哈希函数的个数取到最优时,要让错误率不超过 є m 至少需要取到最小值的 1.44 倍。

1.5、概括

在计算机科学中,我们常常会碰到时间换空间或者空间换时间的情况,即为了达到某一个方面的最优而牺牲另一个方面。 Bloom Filter 在时间空间这两个因素之外又引入了另一个因素:错误率。在使用 Bloom Filter 判断一个元素是否属于某个集合时,会有一定的错误率。也就是说,有可能把不属于这个集合的元素误认为属于这个集合( False Positive ),但不会把属于这个集合的元素误认为不属于这个集合( False Negative )。在增加了错误率这个因素之后, Bloom Filter 通过允许少量的错误来节省大量的存储空间。

自从 Burton Bloom 70 年代提出 Bloom Filter 之后, Bloom Filter 就被广泛用于拼写检查和数据库系统中。近一二十年,伴随着网络的普及和发展, Bloom Filter 在网络领域获得了新生,各种 Bloom Filter 变种和新的应用不断出现。可以预见,随着网络应用的不断深入,新的变种和应用将会继续出现, Bloom Filter 必将获得更大的发展。

二、适用范围

可以用来实现数据字典,进行数据的判重,或者集合求交集

三、基本原理及要点

对于原理来说很简单,位数组+k个独立hash函数。将hash函数对应的值的位数组置1,查找时如果发现所有hash函数对应位都是1说明存在,很明显这 个过程并不保证查找的结果是100%正确的。同时也不支持删除一个已经插入的关键字,因为该关键字对应的位会牵动到其他的关键字。所以一个简单的改进就是 counting Bloom filter,用一个counter数组代替位数组,就可以支持删除了。

还有一个比较重要的问题,如 何根据输入元素个数n,确定位数组m的大小及hash函数个数。当hash函数个数k=(ln2)*(m/n)时错误率最小。在错误率不大于E的情况 下,m至少要等于n*lg(1/E)才能表示任意n个元素的集合。但m还应该更大些,因为还要保证bit数组里至少一半为0,则m应 该>=nlg(1/E)*lge 大概就是nlg(1/E)1.44倍(lg表示以2为底的对数)。

举个例子我们假设错误率为0.01,则此时m应大概是n的13倍。这样k大概是8个。

注意这里m与n的单位不同,m是bit为单位,而n则是以元素个数为单位(准确的说是不同元素的个数)。通常单个元素的长度都是有很多bit的。所以使用bloom filter内存上通常都是节省的。

四、扩展

Bloom filter将集合中的元素映射到位数组中,用k(k为哈希函数个数)个映射位是否全1表示元素在不在这个集合中。Counting bloom filter(CBF)将位数组中的每一位扩展为一个counter,从而支持了元素的删除操作。Spectral Bloom Filter(SBF)将其与集合元素的出现次数关联。SBF采用counter中的最小值来近似表示元素的出现频率。

五、问题实例

给你A,B两个文件,各存放50亿条URL,每条URL占用64字节,内存限制是4G,让你找出A,B文件共同的URL。如果是三个乃至n个文件呢?

根据这个问题我们来计算下内存的占用,4G=2^32大概是40亿*8大概是340亿,n=50亿,如果按出错率0.01算需要的大概是650亿个bit。 现在可用的是340亿,相差并不多,这样可能会使出错率上升些。另外如果这些urlip是一一对应的,就可以转换成ip,则大大简单了。
以上内容整理自:
  1. http://blog.csdn.net/jiaomeng/article/details/1495500
  2. http://blog.redfox66.com/post/2010/09/24/mass-data-topic-1-start.aspx

完。

海量数据处理之Bloom Filter详解


更多文章、技术交流、商务合作、联系博主

微信扫码或搜索:z360901061

微信扫一扫加我为好友

QQ号联系: 360901061

您的支持是博主写作最大的动力,如果您喜欢我的文章,感觉我的文章对您有帮助,请用微信扫描下面二维码支持博主2元、5元、10元、20元等您想捐的金额吧,狠狠点击下面给点支持吧,站长非常感激您!手机微信长按不能支付解决办法:请将微信支付二维码保存到相册,切换到微信,然后点击微信右上角扫一扫功能,选择支付二维码完成支付。

【本文对您有帮助就好】

您的支持是博主写作最大的动力,如果您喜欢我的文章,感觉我的文章对您有帮助,请用微信扫描上面二维码支持博主2元、5元、10元、自定义金额等您想捐的金额吧,站长会非常 感谢您的哦!!!

发表我的评论
最新评论 总共0条评论