ThreadLocal
与synchronized
Java良好的支持多线程。使用java,我们可以很轻松的编程一个多线程程序。但是使用多线程可能会引起并发访问的问题。synchronized和
ThreadLocal
都是用来解决多线程并发访问的问题。大家可能对synchronized较为熟悉,而对
ThreadLocal
就要陌生得多了。
并发问题。当一个对象被两个线程同时访问时,可能有一个线程会得到不可预期的结果。
一个简单的java类Studnet
- public class Student {
- private int age= 0 ;
- public int getAge() {
- return this .age;
- }
- public void setAge( int age) {
- this .age = age;
- }
- }
public class Student { private int age=0; public int getAge() { return this.age; } public void setAge(int age) { this.age = age; } }
一个多线程类ThreadDemo.
这个类有一个Student的私有变量,在run方法中,它随机产生一个整数。然后设置到student变量中,从student中读取设置后的值。然后睡眠5秒钟,最后再次读student的age值。
- public class ThreadDemo implements Runnable{
- Student student = new Student();
- public static void main(String[] agrs) {
- ThreadDemo td = new ThreadDemo();
- Thread t1 = new Thread(td, "a" );
- Thread t2 = new Thread(td, "b" );
- t1.start();
- t2.start();
- }
- /* (non-Javadoc)
- * @see java.lang.Runnable#run()
- */
- public void run() {
- accessStudent();
- }
- public void accessStudent() {
- String currentThreadName = Thread.currentThread().getName();
- System.out.println(currentThreadName+ " is running!" );
- // System.out.println("first read age is:"+this.student.getAge());
- Random random = new Random();
- int age = random.nextInt( 100 );
- System.out.println( "thread " +currentThreadName + " set age to:" +age);
- this .student.setAge(age);
- System.out.println( "thread " +currentThreadName+ " first read age is:" + this .student.getAge());
- try {
- Thread.sleep( 5000 );
- }
- catch (InterruptedException ex) {
- ex.printStackTrace();
- }
- System.out.println( "thread " +currentThreadName + " second read age is:" + this .student.getAge());
- }
- }
public class ThreadDemo implements Runnable{ Student student = new Student(); public static void main(String[] agrs) { ThreadDemo td = new ThreadDemo(); Thread t1 = new Thread(td,"a"); Thread t2 = new Thread(td,"b"); t1.start(); t2.start(); } /* (non-Javadoc) * @see java.lang.Runnable#run() */ public void run() { accessStudent(); } public void accessStudent() { String currentThreadName = Thread.currentThread().getName(); System.out.println(currentThreadName+" is running!"); // System.out.println("first read age is:"+this.student.getAge()); Random random = new Random(); int age = random.nextInt(100); System.out.println("thread "+currentThreadName +" set age to:"+age); this.student.setAge(age); System.out.println("thread "+currentThreadName+" first read age is:"+this.student.getAge()); try { Thread.sleep(5000); } catch(InterruptedException ex) { ex.printStackTrace(); } System.out.println("thread "+currentThreadName +" second read age is:"+this.student.getAge()); } }
运行这个程序,屏幕输出如下:
a is running!
b is running!
thread b set age to:33
thread b first read age is:33
thread a set age to:81
thread a first read age is:81
thread b second read age is:81
thread a second read age is:81
需要注意的是,线程a在同一个方法中,第一次读取student的age值与第二次读取值不一致。这就是出现了并发问题。
synchronized
上面的例子,我们模似了一个并发问题。Java提供了同步机制来解决并发问题。synchonzied关键字可以用来同步变量,方法,甚至同步一个代码块。
使用了同步后,一个线程正在访问同步对象时,另外一个线程必须等待。
Synchronized同步方法
现在我们可以对accessStudent方法实施同步。
public synchronized void accessStudent()
再次运行程序,屏幕输出如下:
a is running!
thread a set age to:49
thread a first read age is:49
thread a second read age is:49
b is running!
thread b set age to:17
thread b first read age is:17
thread b second read age is:17
加上了同步后,线程b必须等待线程a执行完毕后,线程b才开始执行。
对方法进行同步的代价是非常昂贵的。特别是当被同步的方法执行一个冗长的操作。这个方法执行会花费很长的时间,对这样的方法进行同步可能会使系统性能成数量级的下降。
Synchronized同步块
在accessStudent方法中,我们真实需要保护的是student变量,所以我们可以进行一个更细粒度的加锁。我们仅仅对student相关的代码块进行同步。
- synchronized ( this ) {
- Random random = new Random();
- int age = random.nextInt( 100 );
- System.out.println( "thread " +currentThreadName + " set age to:" +age);
- this .student.setAge(age);
- System.out.println( "thread " +currentThreadName+ " first read age is:" + this .student.getAge());
- try {
- Thread.sleep( 5000 );
- }
- catch (InterruptedException ex) {
- ex.printStackTrace();
- }
- }
synchronized(this) { Random random = new Random(); int age = random.nextInt(100); System.out.println("thread "+currentThreadName +" set age to:"+age); this.student.setAge(age); System.out.println("thread "+currentThreadName+" first read age is:"+this.student.getAge()); try { Thread.sleep(5000); } catch(InterruptedException ex) { ex.printStackTrace(); } }
运行方法后,屏幕输出:
a is running!
thread a set age to:18
thread a first read age is:18
b is running!
thread a second read age is:18
thread b set age to:62
thread b first read age is:62
thread b second read age is:62
需要特别注意这个输出结果。
这个执行过程比上面的方法同步要快得多了。
只有对student进行访问的代码是同步的,而其它与部份代码却是异步的了。而student的值并没有被错误的修改。如果是在一个真实的系统中,accessStudent方法的操作又比较耗时的情况下。使用同步的速度几乎与没有同步一样快。
使用同步锁
稍微把上面的例子改一下,在ThreadDemo中有一个私有变量count,。
private int count=0;
在accessStudent()中, 线程每访问一次,count都自加一次, 用来记数线程访问的次数。
- try {
- this .count++;
- Thread.sleep( 5000 );
- } catch (InterruptedException ex) {
- ex.printStackTrace();
- }
try { this.count++; Thread.sleep(5000); }catch(InterruptedException ex) { ex.printStackTrace(); }
为了模拟线程,所以让它每次自加后都睡眠5秒。
accessStuden()方法的完整代码如下:
- String currentThreadName = Thread.currentThread().getName();
- System.out.println(currentThreadName+ " is running!" );
- try {
- this .count++;
- Thread.sleep( 5000 );
- } catch (InterruptedException ex) {
- ex.printStackTrace();
- }
- System.out.println( "thread " +currentThreadName+ " read count:" + this .count);
- synchronized ( this ) {
- Random random = new Random();
- int age = random.nextInt( 100 );
- System.out.println( "thread " +currentThreadName + " set age to:" +age);
- this .student.setAge(age);
- System.out.println( "thread " +currentThreadName+ " first read age is:" + this .student.getAge());
- try {
- Thread.sleep( 5000 );
- }
- catch (InterruptedException ex) {
- ex.printStackTrace();
- }
- }
- System.out.println( "thread " +currentThreadName + " second read age is:" + this .student.getAge());
String currentThreadName = Thread.currentThread().getName(); System.out.println(currentThreadName+" is running!"); try { this.count++; Thread.sleep(5000); }catch(InterruptedException ex) { ex.printStackTrace(); } System.out.println("thread "+currentThreadName+" read count:"+this.count); synchronized(this) { Random random = new Random(); int age = random.nextInt(100); System.out.println("thread "+currentThreadName +" set age to:"+age); this.student.setAge(age); System.out.println("thread "+currentThreadName+" first read age is:"+this.student.getAge()); try { Thread.sleep(5000); } catch(InterruptedException ex) { ex.printStackTrace(); } } System.out.println("thread "+currentThreadName +" second read age is:"+this.student.getAge());
运行程序后,屏幕输出:
a is running!
b is running!
thread a read count:2
thread a set age to:49
thread a first read age is:49
thread b read count:2
thread a second read age is:49
thread b set age to:7
thread b first read age is:7
thread b second read age is:7
我们仍然对student对象以synchronized(this)操作进行同步。
我们需要在两个线程中共享count失败。
所以仍然需要对count的访问进行同步操作。
- synchronized ( this ) {
- try {
- this .count++;
- Thread.sleep( 5000 );
- } catch (InterruptedException ex) {
- ex.printStackTrace();
- }
- }
- System.out.println( "thread " +currentThreadName+ " read count:" + this .count);
- synchronized ( this ) {
- Random random = new Random();
- int age = random.nextInt( 100 );
- System.out.println( "thread " +currentThreadName + " set age to:" +age);
- this .student.setAge(age);
- System.out.println( "thread " +currentThreadName+ " first read age is:" + this .student.getAge());
- try {
- Thread.sleep( 5000 );
- }
- catch (InterruptedException ex) {
- ex.printStackTrace();
- }
- }
- System.out.println( "thread " +currentThreadName + " second read age is:" + this .student.getAge());
- long endTime = System.currentTimeMillis();
- long spendTime = endTime - startTime;
- System.out.println( "花费时间:" +spendTime + "毫秒" );
synchronized(this) { try { this.count++; Thread.sleep(5000); }catch(InterruptedException ex) { ex.printStackTrace(); } } System.out.println("thread "+currentThreadName+" read count:"+this.count); synchronized(this) { Random random = new Random(); int age = random.nextInt(100); System.out.println("thread "+currentThreadName +" set age to:"+age); this.student.setAge(age); System.out.println("thread "+currentThreadName+" first read age is:"+this.student.getAge()); try { Thread.sleep(5000); } catch(InterruptedException ex) { ex.printStackTrace(); } } System.out.println("thread "+currentThreadName +" second read age is:"+this.student.getAge()); long endTime = System.currentTimeMillis(); long spendTime = endTime - startTime; System.out.println("花费时间:"+spendTime +"毫秒");
程序运行后,屏幕输出
a is running!
b is running!
thread a read count:1
thread a set age to:97
thread a first read age is:97
thread a second read age is:97
花费时间:10015毫秒
thread b read count:2
thread b set age to:47
thread b first read age is:47
thread b second read age is:47
花费时间:20124毫秒
我们在同一个方法中,多次使用synchronized(this)进行加锁。有可能会导致太多额外的等待。
应该使用不同的对象锁进行同步。
设置两个锁对象,分别用于student和count的访问加锁。
- private Object studentLock = new Object();
- private Object countLock = new Object();
- accessStudent()方法如下:
- long startTime = System.currentTimeMillis();
- String currentThreadName = Thread.currentThread().getName();
- System.out.println(currentThreadName+ " is running!" );
- // System.out.println("first read age is:"+this.student.getAge());
- synchronized (countLock) {
- try {
- this .count++;
- Thread.sleep( 5000 );
- } catch (InterruptedException ex) {
- ex.printStackTrace();
- }
- }
- System.out.println( "thread " +currentThreadName+ " read count:" + this .count);
- synchronized (studentLock) {
- Random random = new Random();
- int age = random.nextInt( 100 );
- System.out.println( "thread " +currentThreadName + " set age to:" +age);
- this .student.setAge(age);
- System.out.println( "thread " +currentThreadName+ " first read age is:" + this .student.getAge());
- try {
- Thread.sleep( 5000 );
- }
- catch (InterruptedException ex) {
- ex.printStackTrace();
- }
- }
- System.out.println( "thread " +currentThreadName + " second read age is:" + this .student.getAge());
- long endTime = System.currentTimeMillis();
- long spendTime = endTime - startTime;
- System.out.println( "花费时间:" +spendTime + "毫秒" );
private Object studentLock = new Object(); private Object countLock = new Object(); accessStudent()方法如下: long startTime = System.currentTimeMillis(); String currentThreadName = Thread.currentThread().getName(); System.out.println(currentThreadName+" is running!"); // System.out.println("first read age is:"+this.student.getAge()); synchronized(countLock) { try { this.count++; Thread.sleep(5000); }catch(InterruptedException ex) { ex.printStackTrace(); } } System.out.println("thread "+currentThreadName+" read count:"+this.count); synchronized(studentLock) { Random random = new Random(); int age = random.nextInt(100); System.out.println("thread "+currentThreadName +" set age to:"+age); this.student.setAge(age); System.out.println("thread "+currentThreadName+" first read age is:"+this.student.getAge()); try { Thread.sleep(5000); } catch(InterruptedException ex) { ex.printStackTrace(); } } System.out.println("thread "+currentThreadName +" second read age is:"+this.student.getAge()); long endTime = System.currentTimeMillis(); long spendTime = endTime - startTime; System.out.println("花费时间:"+spendTime +"毫秒");
这样对count和student加上了两把不同的锁。
运行程序后,屏幕输出:
a is running!
b is running!
thread a read count:1
thread a set age to:48
thread a first read age is:48
thread a second read age is:48
花费时间:10016毫秒
thread b read count:2
thread b set age to:68
thread b first read age is:68
thread b second read age is:68
花费时间:20046毫秒
与两次使用synchronized(this)相比,使用不同的对象锁,在性能上可以得到更大的提升。
由此可见synchronized是实现java的同步机制。同步机制是为了实现同步多线程对相同资源的并发访问控制。保证多线程之间的通信。
可见,同步的主要目的是保证多线程间的数据共享。同步会带来巨大的性能开销,所以同步操作应该是细粒度的。如果同步使用得当,带来的性能开销是微不足道的。使用同步真正的风险是复杂性和可能破坏资源安全,而不是性能。
ThreadLocal
由上面可以知道,使用同步是非常复杂的。并且同步会带来性能的降低。Java提供了另外的一种方式,通过
ThreadLocal
可以很容易的编写多线程程序。从字面上理解,很容易会把
ThreadLocal
误解为一个线程的本地变量。其它
ThreadLocal
并不是代表当前线程,
ThreadLocal
其实是采用哈希表的方式来为每个线程都提供一个变量的副本。从而保证各个线程间数据安全。每个线程的数据不会被另外线程访问和破坏。
我们把第一个例子用
ThreadLocal
来实现,但是我们需要些许改变。
Student并不是一个私有变量了,而是需要封装在一个
ThreadLocal
对象中去。调用
ThreadLocal
的set方法,
ThreadLocal
会为每一个线程都保持一份Student变量的副本。所以对student的读取操作都是通过
ThreadLocal
来进行的。
- protected Student getStudent() {
- Student student = (Student)studentLocal.get();
- if (student == null ) {
- student = new Student();
- studentLocal.set(student);
- }
- return student;
- }
- protected void setStudent(Student student) {
- studentLocal.set(student);
- }
protected Student getStudent() { Student student = (Student)studentLocal.get(); if(student == null) { student = new Student(); studentLocal.set(student); } return student; } protected void setStudent(Student student) { studentLocal.set(student); }
accessStudent()方法需要做一些改变。通过调用getStudent()方法来获得当前线程的Student变量,如果当前线程不存在一个Student变量,getStudent方法会创建一个新的Student变量,并设置在当前线程中。
Student student = getStudent();
student.setAge(age);
accessStudent()方法中无需要任何同步代码。
完整的代码清单如下:
TreadLocalDemo.java
- public class TreadLocalDemo implements Runnable {
- private final static ThreadLocal studentLocal = new ThreadLocal ();
- public static void main(String[] agrs) {
- TreadLocalDemo td = new TreadLocalDemo();
- Thread t1 = new Thread(td, "a" );
- Thread t2 = new Thread(td, "b" );
- t1.start();
- t2.start();
- }
- /* (non-Javadoc)
- * @see java.lang.Runnable#run()
- */
- public void run() {
- accessStudent();
- }
- public void accessStudent() {
- String currentThreadName = Thread.currentThread().getName();
- System.out.println(currentThreadName+ " is running!" );
- Random random = new Random();
- int age = random.nextInt( 100 );
- System.out.println( "thread " +currentThreadName + " set age to:" +age);
- Student student = getStudent();
- student.setAge(age);
- System.out.println( "thread " +currentThreadName+ " first read age is:" +student.getAge());
- try {
- Thread.sleep( 5000 );
- }
- catch (InterruptedException ex) {
- ex.printStackTrace();
- }
- System.out.println( "thread " +currentThreadName + " second read age is:" +student.getAge());
- }
- protected Student getStudent() {
- Student student = (Student)studentLocal.get();
- if (student == null ) {
- student = new Student();
- studentLocal.set(student);
- }
- return student;
- }
- protected void setStudent(Student student) {
- studentLocal.set(student);
- }
- }
public class TreadLocalDemo implements Runnable { private final static ThreadLocal studentLocal = new ThreadLocal (); public static void main(String[] agrs) { TreadLocalDemo td = new TreadLocalDemo(); Thread t1 = new Thread(td,"a"); Thread t2 = new Thread(td,"b"); t1.start(); t2.start(); } /* (non-Javadoc) * @see java.lang.Runnable#run() */ public void run() { accessStudent(); } public void accessStudent() { String currentThreadName = Thread.currentThread().getName(); System.out.println(currentThreadName+" is running!"); Random random = new Random(); int age = random.nextInt(100); System.out.println("thread "+currentThreadName +" set age to:"+age); Student student = getStudent(); student.setAge(age); System.out.println("thread "+currentThreadName+" first read age is:"+student.getAge()); try { Thread.sleep(5000); } catch(InterruptedException ex) { ex.printStackTrace(); } System.out.println("thread "+currentThreadName +" second read age is:"+student.getAge()); } protected Student getStudent() { Student student = (Student)studentLocal.get(); if(student == null) { student = new Student(); studentLocal.set(student); } return student; } protected void setStudent(Student student) { studentLocal.set(student); } }
运行程序后,屏幕输出:
b is running!
thread b set age to:0
thread b first read age is:0
a is running!
thread a set age to:17
thread a first read age is:17
thread b second read age is:0
thread a second read age is:17
可见,使用
ThreadLocal
后,我们不需要任何同步代码,却能够保证我们线程间数据的安全。
而且,
ThreadLocal
的使用也非常的简单。
我们仅仅需要使用它提供的两个方法
void set(Object obj) 设置当前线程的变量的副本的值。
Object get() 返回当前线程的变量副本
另外
ThreadLocal
还有一个protected的initialValue()方法。返回变量副本在当前线程的初始值。默认为null
ThreadLocal
是怎么做到为每个线程都维护一个变量的副本的呢?
我们可以猜测到
ThreadLocal
的一个简单实现
- public class ThreadLocal
- {
- private Map values = Collections.synchronizedMap( new HashMap());
- public Object get()
- {
- Thread curThread = Thread.currentThread();
- Object o = values.get(curThread);
- if (o == null && !values.containsKey(curThread))
- {
- o = initialValue();
- values.put(curThread, o);
- }
- return o;
- }
- public void set(Object newValue)
- {
- values.put(Thread.currentThread(), newValue);
- }
- public Object initialValue()
- {
- return null ;
- }
- }
public class
ThreadLocal
{
private Map values = Collections.synchronizedMap(new HashMap());
public Object get()
{
Thread curThread = Thread.currentThread();
Object o = values.get(curThread);
if (o == null && !values.containsKey(curThread))
{
o = initialValue();
values.put(curThread, o);
}
return o;
}
public void set(Object newValue)
{
values.put(Thread.currentThread(), newValue);
}
public Object initialValue()
{
return null;
}
}
由此可见,
ThreadLocal
通过一个Map来为每个线程都持有一个变量副本。这个map以当前线程为key。与synchronized相比,
ThreadLocal
是以空间换时间的策略来实现多线程程序。
Synchronized还是
ThreadLocal
?
ThreadLocal
以空间换取时间,提供了一种非常简便的多线程实现方式。因为多个线程并发访问无需进行等待,所以使用
ThreadLocal
会获得更大的性能。虽然使用
ThreadLocal
会带来更多的内存开销,但这点开销是微不足道的。因为保存在
ThreadLocal
中的对象,通常都是比较小的对象。另外使用
ThreadLocal
不能使用原子类型,只能使用Object类型。
ThreadLocal
的使用比synchronized要简单得多。
ThreadLocal
和Synchonized都用于解决多线程并发访问。但是
ThreadLocal
与synchronized有本质的区别。synchronized是利用锁的机制,使变量或代码块在某一时该只能被一个线程访问。而
ThreadLocal
为每一个线程都提供了变量的副本,使得每个线程在某一时间访问到的并不是同一个对象,这样就隔离了多个线程对数据的数据共享。而Synchronized却正好相反,它用于在多个线程间通信时能够获得数据共享。
Synchronized用于线程间的数据共享,而
ThreadLocal
则用于线程间的数据隔离。
当然
ThreadLocal
并不能替代synchronized,它们处理不同的问题域。Synchronized用于实现同步机制,比
ThreadLocal
更加复杂。