在 Python 中,有四类最常见的内建容器类型:
列表(list)
、
元组(tuple)
、
字典(dict)
、
集合(set)
。通过单独或是组合使用它们,可以高效的完成很多事情。
Python 语言自身的内部实现细节也与这些容器类型息息相关。比如 Python 的类实例属性、全局变量
globals()
等就都是通过字典类型来存储的。
在这篇文章里,我首先会从容器类型的定义出发,尝试总结出一些日常编码的最佳实践。之后再围绕各个容器类型提供的特殊机能,分享一些编程的小技巧。
当我们谈论容器时,我们在谈些什么?
我在前面给了“容器”一个简单的定义:专门用来装其他对象的就是容器。但这个定义太宽泛了,无法对我们的日常编程产生什么指导价值。要真正掌握 Python 里的容器,需要分别从两个层面入手:
-
底层实现: 内置容器类型使用了什么数据结构?某项操作如何工作?
- 高层抽象: 什么决定了某个对象是不是容器?哪些行为定义了容器?
下面,让我们一起站在这两个不同的层面上,重新认识容器。
底层看容器
Python 是一门高级编程语言, 它所提供的内置容器类型,都是经过高度封装和抽象后的结果。 和“链表”、“红黑树”、“哈希表”这些名字相比,所有 Python 内建类型的名字,都只描述了这个类型的功能特点,其他人完全没法只通过这些名字了解它们的哪怕一丁点内部细节。
这是 Python 编程语言的优势之一。相比 C 语言这类更接近计算机底层的编程语言,Python 重新设计并实现了对编程者更友好的内置容器类型,屏蔽掉了内存管理等额外工作。为我们提供了更好的开发体验。
但如果这是 Python 语言的优势的话,为什么我们还要费劲去了解容器类型的实现细节呢?答案是: 关注细节可以帮助我们编写出更快的代码。
如果你依然在编程的世界里迷茫,可以加入我们的Python学习扣qun:784758214,看看前辈们是如何学习的。交流经验。从基础的python脚本到web开发、爬虫、django、数据挖掘等,零基础到项目实战的资料都有整理。送给每一位python的小伙伴!分享一些学习的方法和需要注意的小细节,点击加入我们的 python学习者聚集地
写更快的代码
1. 避免频繁扩充列表/创建新列表
所有的内建容器类型都不限制容量。如果你愿意,你可以把递增的数字不断塞进一个空列表,最终撑爆整台机器的内存。
在 Python 语言的实现细节里,列表的内存是按需分配的[注1],当某个列表当前拥有的内存不够时,便会触发内存扩容逻辑。而分配内存是一项昂贵的操作。虽然大部分情况下,它不会对你的程序性能产生什么严重的影响。但是当你处理的数据量特别大时,很容易因为内存分配拖累整个程序的性能。
还好,Python 早就意识到了这个问题,并提供了官方的问题解决指引,那就是: “变懒” 。
如何解释“变懒”?
range()
函数的进化是一个非常好的例子。
在 Python 2 中,如果你调用
range(100000000)
,需要等待好几秒才能拿到结果,因为它需要返回一个巨大的列表,花费了非常多的时间在内存分配与计算上。但在 Python 3 中,同样的调用马上就能拿到结果。因为函数返回的不再是列表,而是一个类型为
range
的懒惰对象,只有在你迭代它、或是对它进行切片时,它才会返回真正的数字给你。
所以说,为了提高性能,内建函数
range
“变懒”了。
而为了避免过于频繁的内存分配,在日常编码中,我们的函数同样也需要变懒,这包括:
-
更多的使用
yield
关键字,返回生成器对象 -
尽量使用生成器表达式替代列表推导表达式
-
生成器表达式:
(iforinrange(100))