python实现beta分布概率密度函数的方法

系统 2093 0

如下所示:

            
beta分布的最大特点是其多样性, 从下图可以看出, beta分布具有各种形态, 有U形, 类似正态分布的形状, 类似uniform分布的形状等, 正式这一特质使beta分布在共轭先验的计算中起到重要作用:

import matplotlib.pyplot as plt
import numpy as np
from scipy import stats
from matplotlib import style
style.use('ggplot')
params = [0.5, 1, 2, 3]
x = np.linspace(0, 1, 100)
f, ax = plt.subplots(len(params), len(params), sharex=True, sharey=True)
for i in range(4):
  for j in range(4):
    alpha = params[i]
    beta = params[j]
    pdf = stats.beta(alpha, beta).pdf(x)
    ax[i, j].plot(x, pdf)
    ax[i, j].plot(0, 0, label='alpha={:3.2f}\nbeta={:3.2f}'.format(alpha, beta), alpha=0)
    plt.setp(ax[i, j], xticks=[0.0, 0.2, 0.4, 0.6, 0.8, 1.0], yticks=[0,2,4,6,8,10])
    ax[i, j].legend(fontsize=10)
ax[3, 0].set_xlabel('theta', fontsize=16)
ax[0, 0].set_ylabel('pdf(theta)', fontsize=16)
plt.suptitle('Beta PDF', fontsize=16)
plt.tight_layout()
plt.show()

          

python实现beta分布概率密度函数的方法_第1张图片

以上这篇python实现beta分布概率密度函数的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持脚本之家。


更多文章、技术交流、商务合作、联系博主

微信扫码或搜索:z360901061

微信扫一扫加我为好友

QQ号联系: 360901061

您的支持是博主写作最大的动力,如果您喜欢我的文章,感觉我的文章对您有帮助,请用微信扫描下面二维码支持博主2元、5元、10元、20元等您想捐的金额吧,狠狠点击下面给点支持吧,站长非常感激您!手机微信长按不能支付解决办法:请将微信支付二维码保存到相册,切换到微信,然后点击微信右上角扫一扫功能,选择支付二维码完成支付。

【本文对您有帮助就好】

您的支持是博主写作最大的动力,如果您喜欢我的文章,感觉我的文章对您有帮助,请用微信扫描上面二维码支持博主2元、5元、10元、自定义金额等您想捐的金额吧,站长会非常 感谢您的哦!!!

发表我的评论
最新评论 总共0条评论