详解如何减少python内存的消耗

系统 1744 0

Python 打算删除大量涉及像C和C++语言那样的复杂内存管理。当对象离开范围,就会被自动垃圾收集器回收。然而,对于由 Python 开发的大型且长期运行的系统来说,内存管理是不容小觑的事情。

在这篇博客中,我将会分享关于减少 Python 内存消耗的方法和分析导致内存消耗/膨胀根源的问题。这些都是从实际操作中总结的经验,我们正在构建 Datos IO 的 RecoverX 分布式备份和恢复平台,这里主要要介绍的是在 Python(在 C++ ,Java 和 bash 中也有一些类似的组件) 中的开发。

Python 垃圾收集

Python解释器对正在使用的对象保持计数。当对象不再被引用指向的时候,垃圾收集器可以释放该对象,获取分配的内存。例如,如果你使用常规的Python(CPython, 不是JPython)时,Python的垃圾收集器将调用free()/delete() 。

实用工具

资源(resource)

resource 模块用来查看项目当前得的固有的)内存消耗(固有内存是项目实际使用的RAM),注意resource库只在linux系统下有效

            
>>> import resource
>>> resource.getrusage(resource.RUSAGE_SELF).ru_maxrss
443
          

对象(objgraph)

objgraph 是一个实用模块,可以展示当前内存中存在的对象

来看看objgraph的简单用法:

            
import objgraph
import random
import inspect

class Foo(object):

  def __init__(self):
    self.val = None

  def __str__(self):
    return "foo - val: {0}".format(self.val)

def f():

  l = []

  for i in range(3):
    foo = Foo()
    l.append(foo)

  return l


def main():

  d = {}

  l = f()

  d['k'] = l

  print "list l has {0} objectsoftype Foo()".format(len(l))
          

pythontest1.py

输出:

list l has 10000 objectsoftype Foo()
dict 10423
Foo 10000 ――――> Guiltyas charged!
tuple 3349
wrapper_descriptor 945
function 860
builtin_function_or_method 616
method_descriptor 338
weakref 199
member_descriptor 161
getset_descriptor 107

注意,我们在内存中还持有10,423个‘dict'的实例对象。

可视化objgraph依赖项

Objgraph有个不错的功能,可以显示Foo()对象在内存中存在的因素,即,显示谁持有对它的引用 (在这个例子中是list l )。

在RedHat/Centos上, 你可以使用sudo yum install graphviz*安装graphviz
在Ubunbu等系统上使用sudo apt-get install graphviz*安装graphviz

如需查看对象字典 d ,请参考:

            
objgraph.show_refs(d, filename='sample-graph.png')
          

详解如何减少python内存的消耗_第1张图片

从内存使用角度来看,我们惊奇地发现――为什么对象没有释放?这是因为有人在持有对它的引用。

这个小片段展示了objgraph怎样提供相关信息:

            
objgraph.show_backrefs(random.choice(objgraph.by_type('Foo')), filename="foo_refs.png")
          

详解如何减少python内存的消耗_第2张图片

在这一案例中, 我们查看了Foo类型的随机对象。我们知道该特定对象被保存在内存中,因其引用链接在指定范围内。

有时,以上技巧能帮助我们理解,为什么当我们不再使用某对象时,Python垃圾回收器没有将垃圾回收。

难处理的是,有时候我们会发现Foo()占用了很多内存的类。这时我们可以用heapy()来回答以上问题。

Heapy

heapy 是一个实用的,用于调试内存消耗/泄漏的工具。通常,我将objgraph和heapy搭配使用:用 heapy 查看分配对象随时间增长的差异,heapy能够显示对象持有的最大内存等;用Objgraph找backref链(例如:前4节),尝试获取它们不能被释放的原因。

Heapy的典型用法是在不同地方的代码中调用一个函数,试图为内存使用量提供大量收集线索,找到可能会引发的问题:

            
from guppyimport hpy


def dump_heap(h, i):
  """
  @param h: Theheap (from hp = hpy(), h = hp.heap())
  @param i: Identifierstr
  """

  print "Dumpingstatsat: {0}".format(i)

  print 'Memoryusage: {0}(MB)'.format(resource.getrusage(resource.RUSAGE_SELF).ru_maxrss/1024)

  print "Mostcommontypes:"
  objgraph.show_most_common_types()

  print "heapis:"
  print "{0}".format(h)

  by_refs = h.byrcs
  print "byreferences: {0}".format(by_refs)
  print "Morestatsfor topelement.."
  print "Byclodo (class or dict owner): {0}".format(by_refs[0].byclodo)
  print "Bysize: {0}".format(by_refs[0].bysize)
  print "Byid: {0}".format(by_refs[0].byid)
          

减少内存消耗小技巧

在这一部分,我会介绍一些自己发现的可减少内存消耗的小窍门.

Slots

当你有许多对象时候可以使用Slots。Slotting传达给Python解释器:你的对象不需要动态的字典(从上面的例子2.2中,我们看到每个Foo()对象内部包含一个字典)

用slots定义你的对象,让python解释器知道你的类属性/成员是固定的.。这样可以有效地节约内存!

参考以下代码:

            
import resource

class Foo(object):
  #__slots__ = ('val1', 'val2', 'val3', 'val4', 'val5', 'val6')

  def __init__(self, val):
    self.val1 = val+1
    self.val2 = val+2
    self.val3 = val+3
    self.val4 = val+4
    self.val5 = val+5
    self.val6 = val+6

def f(count):
  l = []
  for i in range(count):
    foo = Foo(i)
    l.append(foo)

  return l

def main():
  count = 10000
  l = f(count)

  mem = resource.getrusage(resource.RUSAGE_SELF).ru_maxrss

  print "Memoryusageis: {0} KB”.format(mem)

  print "Sizeperfooobj: {0} KB”.format(float(mem)/count)

if __name__ == "__main__”:
  main()
          

[vagrant@datosdevtemp]$ pythontest2.py

输出:

Memoryusageis: 16672 KB
Sizeperfooobj: 1.6672 KB
Nowun-commentthisline: #__slots__ = (‘val1', ‘val2', ‘val3', ‘val4', ‘val5', ‘val6')
[vagrant@datosdevtemp]$ pythontest2.py
Memoryusageis: 6576 KB
Sizeperfooobj: 0.6576 KB

在这个例子中,减少了60%的内存消耗!

驻留:谨防驻留字符串!

Python会记录如字符串等不可改变的值(其每个值的大小依赖于实现方法),这称为驻留。

            
>>> t = "abcdefghijklmnopqrstuvwxyz"
>>>> p = "abcdefghijklmnopqrstuvwxyz"
>>>> id(t)
139863272322872
>>> id(p)
139863272322872
          

这是由python解析器完成的,这样做可以节省内存,并加快比较速度。例如,如果两个字符串拥有相同的ID或引用�C他们就是全等的。

然而,如果你的程序创建了许多小的字符串,你的内存就会出现膨胀。

生成字符串时使用Format来代替“+”

接下来,在构造字符串时,使用Format来代替“+”构建字符串。

亦即,

            
st = "{0}_{1}_{2}_{3}".format(a,b,c,d) # 对内存更好,不创建临时变量
st2 = a + '_' + b + '_' + c + '_' + d # 在每个"+"时创建一个临时str,这些都是驻留在内存中的。
          

在我们的系统中,当我们将某些字符串构造从“+”变为使用format时,内存会明显被节省。

关于系统级别

上面我们讨论的技巧可以帮助你找出系统内存消耗的问题。但是,随着时间的推移,python进程产生的内存消耗会持续增加。这似乎与以下问题有关:

  1. 为什么C中内存分配能够在Python内部起作用,这本质上是内存碎片导致的。因为,除非整个内存没有使用过,否则该分配过程不能调用‘free'方法。但需要注意的是,内存的使用不是根据你所创建和使用的对象来进行排列。
  2. 内存增加也和上面讨论的“Interning” 有关。

以我的经验来看,减少python中内存消耗的比例是可行的。在Datos IO中,我曾经针对指定的内存消耗进程实现过一个工作模块。对于序列化的工作单元,我们运行了一个工作进程。当工作进程完成后, 它会被移除了――这是返回系统全部内存的唯一可以有效方法 :)。好的内存管理允许增加分配内存的大小,即允许工作进程长时间运行。

总结

我归纳了一些减少python进程消耗内存的技巧,当我们在代码中寻找内存泄漏时,一种方法是通过使用Heapy找出哪些Obj占用了较多内存,然后通过使用Objgraph找出内存被释放的原因(除非你认为他们本应该被释放)。

总的来说,我觉得在python中寻找内存问题是一种修行。随着时间的积累,对于系统中的内存膨胀和泄漏问题,你能产生一种直觉判断,并能更快地解决它们。愿你在发现问题的过程中找到乐趣!

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持脚本之家。


更多文章、技术交流、商务合作、联系博主

微信扫码或搜索:z360901061

微信扫一扫加我为好友

QQ号联系: 360901061

您的支持是博主写作最大的动力,如果您喜欢我的文章,感觉我的文章对您有帮助,请用微信扫描下面二维码支持博主2元、5元、10元、20元等您想捐的金额吧,狠狠点击下面给点支持吧,站长非常感激您!手机微信长按不能支付解决办法:请将微信支付二维码保存到相册,切换到微信,然后点击微信右上角扫一扫功能,选择支付二维码完成支付。

【本文对您有帮助就好】

您的支持是博主写作最大的动力,如果您喜欢我的文章,感觉我的文章对您有帮助,请用微信扫描上面二维码支持博主2元、5元、10元、自定义金额等您想捐的金额吧,站长会非常 感谢您的哦!!!

发表我的评论
最新评论 总共0条评论