python实现最小二乘法线性拟合

系统 1860 0

本文python代码实现的是最小二乘法线性拟合,并且包含自己造的轮子与别人造的轮子的结果比较。

问题:对直线附近的带有噪声的数据进行线性拟合,最终求出w,b的估计值。

最小二乘法基本思想是使得样本方差最小。

代码中self_func()函数为自定义拟合函数,skl_func()为调用scikit-learn中线性模块的函数。

            
import numpy as np
import matplotlib.pyplot as plt
from sklearn.linear_model import LinearRegression
 
n = 101
 
x = np.linspace(0,10,n)
noise = np.random.randn(n)
y = 2.5 * x + 0.8 + 2.0 * noise
 
def self_func(steps=100, alpha=0.01):
  w = 0.5
  b = 0
  alpha = 0.01
  for i in range(steps):
    y_hat = w*x + b
    dy = 2.0*(y_hat - y)
    dw = dy*x
    db = dy
    w = w - alpha*np.sum(dw)/n
    b = b - alpha*np.sum(db)/n
    e = np.sum((y_hat-y)**2)/n
    #print (i,'W=',w,'\tb=',b,'\te=',e)
  print ('self_func:\tW =',w,'\n\tb =',b)
  plt.scatter(x,y)
  plt.plot(np.arange(0,10,1), w*np.arange(0,10,1) + b, color = 'r', marker = 'o', label = 'self_func(steps='+str(steps)+', alpha='+str(alpha)+')')
 
def skl_func():
  lr = LinearRegression()
  lr.fit(x.reshape(-1,1),y)
  y_hat = lr.predict(np.arange(0,10,0.75).reshape(-1,1))
  print('skl_fun:\tW = %f\n\tb = %f'%(lr.coef_,lr.intercept_))
  plt.plot(np.arange(0,10,0.75), y_hat, color = 'g', marker = 'x', label = 'skl_func')
  
self_func(10000)
skl_func()
plt.legend(loc='upper left')
plt.show()
          

结果:

self_func:  W = 2.5648753825503197     b = 0.24527830841237772
skl_fun:     W = 2.564875                             b = 0.245278

python实现最小二乘法线性拟合_第1张图片

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持脚本之家。


更多文章、技术交流、商务合作、联系博主

微信扫码或搜索:z360901061

微信扫一扫加我为好友

QQ号联系: 360901061

您的支持是博主写作最大的动力,如果您喜欢我的文章,感觉我的文章对您有帮助,请用微信扫描下面二维码支持博主2元、5元、10元、20元等您想捐的金额吧,狠狠点击下面给点支持吧,站长非常感激您!手机微信长按不能支付解决办法:请将微信支付二维码保存到相册,切换到微信,然后点击微信右上角扫一扫功能,选择支付二维码完成支付。

【本文对您有帮助就好】

您的支持是博主写作最大的动力,如果您喜欢我的文章,感觉我的文章对您有帮助,请用微信扫描上面二维码支持博主2元、5元、10元、自定义金额等您想捐的金额吧,站长会非常 感谢您的哦!!!

发表我的评论
最新评论 总共0条评论