python 树状嵌套结构的实现思路

系统 1600 0

原始数据

原始数据大致是这样子的:
每条数据中的四个数据分别是 当前节点名称,节点描述(指代一些需要的节点属性),源节点(即最顶层节点),父节点(当前节点上一层节点)。

            
              datas = [
    ["root", "根节点", "root", None],
    ["node1", "一级节点1", "root", "root"],
    ["node2", "一级节点2", "root", "root"],
    ["node11", "二级节点11", "root", "node1"],
    ["node12", "二级节点12", "root", "node1"],
    ["node21", "二级节点21", "root", "node2"],
    ["node22", "二级节点22", "root", "node2"],
]

            
          

节点类

抽象封装出一个节点类:

            
              class Node(object):
    def __init__(self, name: str, desc, parent: str, children: list):
        """
        初始化
        :param name:
        :param desc:
        :param parent:
        :param children:
        """
        self.name = name
        self.desc = desc
        self.parent = parent
        self.children = children

    def get_nodes(self):
        """
        获取该节点下的全部结构字典
        """
        d = dict()
        d['name'] = self.name
        d['desc'] = self.desc
        d['parent'] = self.parent
        children = self.get_children()
        if children:
            d['children'] = [child.get_nodes() for child in children]
        return d

    def get_children(self):
        """
        获取该节点下的全部节点对象
        """
        return [n for n in nodes if n.parent == self.name]

    def __repr__(self):
        return self.name

            
          

将原始数据转换为节点对象

            
              nodes = list()
for data in datas:
    node = Node(data[0], data[1], data[-1], [])
    nodes.append(node)

            
          

为各个节点建立联系

            
              for node in nodes:
    children_names = [data[0] for data in datas if data[-1] == node.name]
    children = [node for node in nodes if node.name in children_names]
    node.children.extend(children)

            
          

测试

            
              root = nodes[0]
print(root)

tree = root.get_nodes()
print(json.dumps(tree, indent=4))

            
          

运行结果:
python 树状嵌套结构的实现思路_第1张图片
原始数据也可以是字典的形式:

            
              ### fork_tool.py
import json


class Node(object):
    def __init__(self, **kwargs):
        """
        初始化
        :param nodes: 树的全部节点对象
        :param kwargs: 当前节点参数
        """

        self.forked_id = kwargs.get("forked_id")
        self.max_drawdown = kwargs.get("max_drawdown")
        self.annualized_returns = kwargs.get("annualized_returns")
        self.create_time = kwargs.get("create_time")
        self.desc = kwargs.get("desc")
        self.origin = kwargs.get("origin")
        self.parent = kwargs.get("parent")
        self.children = kwargs.get("children", [])

    def get_nodes(self, nodes):
        """
        获取该节点下的全部结构字典,即建立树状联系
        """
        d = dict()
        d['forked_id'] = self.forked_id
        d['max_drawdown'] = self.max_drawdown
        d['annualized_returns'] = self.annualized_returns
        d['create_time'] = self.create_time
        d['desc'] = self.desc
        d['origin'] = self.origin
        d['parent'] = self.parent
        children = self.get_children(nodes)
        if children:
            d['children'] = [child.get_nodes(nodes) for child in children]
        return d

    def get_children(self, nodes):
        """
        获取该节点下的全部节点对象
        """
        return [n for n in nodes if n.parent == self.forked_id]

    # def __repr__(self):
    #     return str(self.desc)


def process_datas(datas):
    """
    处理原始数据
    :param datas:
    :return:
    """
    # forked_infos.append({"forked_id": str(forked_strategy.get("_id")),
    #  "max_drawdown": max_drawdown,
    #  "annualized_returns": annualized_returns,
    #  "create_time": create_time,  # 分支创建时间
    #  "desc": desc,
    #  "origin": origin,
    #  "parent": parent,
    #  "children": [],
    #  })

    nodes = []
    # 构建节点列表集
    for data in datas:
        node = Node(**data)
        nodes.append(node)

    # 为各个节点对象建立类 nosql 结构的联系
    for node in nodes:
        children_ids = [data["forked_id"] for data in datas if data["parent"] == node.forked_id]
        children = [node for node in nodes if node.forked_id in children_ids]
        node.children.extend(children)

    return nodes


test_datas = [
    {'annualized_returns': 0.01,
     'children': [],
     'create_time': 1562038393,
     'desc': 'root',
     'forked_id': '5d1ad079e86117f3883f361e',
     'max_drawdown': 0.01,
     'origin': None,
     'parent': None},

    {'annualized_returns': 0.314,
     'children': [],
     'create_time': 1562060612,
     'desc': 'level1',
     'forked_id': '5d1b2744b264566d3f3f3632',
     'max_drawdown': 0.2,
     'origin': '5d1ad079e86117f3883f361e',
     'parent': '5d1ad079e86117f3883f361e'},

    {'annualized_returns': 0.12,
     'children': [],
     'create_time': 1562060613,
     'desc': 'level11',
     'forked_id': '5d1b2745e86117f3883f3632',
     'max_drawdown': None,
     'origin': '5d1ad079e86117f3883f361e',
     'parent': '5d1b2744b264566d3f3f3632'},

    {'annualized_returns': 0.09,
     'children': [],
     'create_time': 1562060614,
     'desc': 'level12',
     'forked_id': '5d1b2746b264566d3f3f3633',
     'max_drawdown': None,
     'origin': '5d1ad079e86117f3883f361e',
     'parent': '5d1b2744b264566d3f3f3632'},

    {'annualized_returns': None,
     'children': [],
     'create_time': 1562060614,
     'desc': 'level2',
     'forked_id': '5d1b2746e86117f3883f3633',
     'max_drawdown': None,
     'origin': '5d1ad079e86117f3883f361e',
     'parent': '5d1ad079e86117f3883f361e'},

    {'annualized_returns': None,
     'children': [],
     'create_time': 1562060627,
     'desc': 'level21',
     'forked_id': '5d1b2753b264566d3f3f3635',
     'max_drawdown': None,
     'origin': '5d1ad079e86117f3883f361e',
     'parent': '5d1b2746e86117f3883f3633'},

    {'annualized_returns': None,
     'children': [],
     'create_time': 1562060628,
     'desc': 'level211',
     'forked_id': '5d1b2754b264566d3f3f3637',
     'max_drawdown': None,
     'origin': '5d1ad079e86117f3883f361e',
     'parent': '5d1b2753b264566d3f3f3635'},

    {'annualized_returns': None,
     'children': [],
     'create_time': 1562060640,
     'desc': 'level212',
     'forked_id': '5d1b2760e86117f3883f3634',
     'max_drawdown': None,
     'origin': '5d1ad079e86117f3883f361e',
     'parent': '5d1b2753b264566d3f3f3635'},
]


if __name__ == "__main__":
    nodes = process_datas(test_datas)
    info = nodes[0].get_nodes(nodes)
    print(json.dumps(info, indent=4))

            
          

更多文章、技术交流、商务合作、联系博主

微信扫码或搜索:z360901061

微信扫一扫加我为好友

QQ号联系: 360901061

您的支持是博主写作最大的动力,如果您喜欢我的文章,感觉我的文章对您有帮助,请用微信扫描下面二维码支持博主2元、5元、10元、20元等您想捐的金额吧,狠狠点击下面给点支持吧,站长非常感激您!手机微信长按不能支付解决办法:请将微信支付二维码保存到相册,切换到微信,然后点击微信右上角扫一扫功能,选择支付二维码完成支付。

【本文对您有帮助就好】

您的支持是博主写作最大的动力,如果您喜欢我的文章,感觉我的文章对您有帮助,请用微信扫描上面二维码支持博主2元、5元、10元、自定义金额等您想捐的金额吧,站长会非常 感谢您的哦!!!

发表我的评论
最新评论 总共0条评论