首发:深度学习入门宝典-《python深度学习》原文代码中文注释版及电子书

系统 1640 0

原创: 机器学习初学者 机器学习初学者


首发:深度学习入门宝典-《python深度学习》原文代码中文注释版及电子书_第1张图片

《python深度学习》由Keras之父、现任Google人工智能研究员的弗朗索瓦•肖莱(François Chollet)执笔,详尽介绍了用Python和Keras进行深度学习的探索实践,包括 计算机视觉、自然语言处理、生成式模型 等应用。书中包含30多个代码示例,步骤讲解详细透彻。

作者在github公布了代码,代码几乎囊括了本书所有知识点。在学习完本书后,读者将具备搭建自己的深度学习环境、建立图像识别模型、生成图像和文字等能力。但是有一个小小的遗憾:代码的解释和注释是全英文的,即使英文水平较好的朋友看起来也很吃力。

本站认为,这本书和代码是初学者入门深度学习及Keras最好的工具。

本站对全部代码做了中文解释和注释,并下载了代码所需要的一些数据集(尤其是“猫狗大战”数据集),并对其中一些图像进行了本地化,代码全部测试通过。(请按照文件顺序运行,代码前后有部分关联)。

以下代码包含了全书80%左右的知识点, 代码目录:

  • 2.1: A first look at a neural network( 初识神经网络)
  • 3.5: Classifying movie reviews(电影评论分类:二分类问题)
  • 3.6: Classifying newswires(新闻分类:多分类问题 )
  • 3.7: Predicting house prices(预测房价:回归问题)
  • 4.4: Underfitting and overfitting( 过拟合与欠拟合)
  • 5.1: Introduction to convnets(卷积神经网络简介)
  • 5.2: Using convnets with small datasets(在小型数据集上从头开始训练一个卷积
  • 5.3: Using a pre-trained convnet(使用预训练的卷积神经网络)
  • 5.4: Visualizing what convnets learn(卷积神经网络的可视化)
  • 6.1: One-hot encoding of words or characters(单词和字符的 one-hot 编码)
  • 6.1: Using word embeddings(使用词嵌入)
  • 6.2: Understanding RNNs(理解循环神经网络)
  • 6.3: Advanced usage of RNNs(循环神经网络的高级用法)
  • 6.4: Sequence processing with convnets(用卷积神经网络处理序列)
  • 8.1: Text generation with LSTM(使用 LSTM 生成文本)
  • 8.2: Deep dream(DeepDream)
  • 8.3: Neural style transfer( 神经风格迁移)
  • 8.4: Generating images with VAEs(用变分自编码器生成图像)
  • 8.5: Introduction to GANs(生成式对抗网络简介)

作者的github: https://github.com/fchollet/deep-learning-with-python-notebooks

python深度学习代码、电子书和数据集链接 :https://pan.baidu.com/s/1Ni8apGSR56Dyf7nOKBVPNQ 提取码:sdgi


更多文章、技术交流、商务合作、联系博主

微信扫码或搜索:z360901061

微信扫一扫加我为好友

QQ号联系: 360901061

您的支持是博主写作最大的动力,如果您喜欢我的文章,感觉我的文章对您有帮助,请用微信扫描下面二维码支持博主2元、5元、10元、20元等您想捐的金额吧,狠狠点击下面给点支持吧,站长非常感激您!手机微信长按不能支付解决办法:请将微信支付二维码保存到相册,切换到微信,然后点击微信右上角扫一扫功能,选择支付二维码完成支付。

【本文对您有帮助就好】

您的支持是博主写作最大的动力,如果您喜欢我的文章,感觉我的文章对您有帮助,请用微信扫描上面二维码支持博主2元、5元、10元、自定义金额等您想捐的金额吧,站长会非常 感谢您的哦!!!

发表我的评论
最新评论 总共0条评论