详解用Python为直方图绘制拟合曲线的两种方法

系统 2051 0

直方图是用于展示数据的分组分布状态的一种图形,用矩形的宽度和高度表示频数分布,通过直方图,用户可以很直观的看出数据分布的形状、中心位置以及数据的离散程度等。

在python中一般采用matplotlib库的hist来绘制直方图,至于如何给直方图添加拟合曲线(密度函数曲线),一般来说有以下两种方法。

方法一:采用matplotlib中的mlab模块

mlab模块是Python中强大的3D作图工具,立体感效果极佳。在这里使用mlab可以跳出直方图二维平面图形的限制,在此基础上再添加一条曲线。在这里,我们以鸢尾花iris中的数据为例,来举例说明。

            
import numpy as np
import matplotlib.mlab as mlab
import matplotlib.pyplot as plt
import pandas
# Load dataset
url =
"https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data"
names = ['sepal-length', 'sepal-width','petal-length', 'petal-width', 'class']
dataset = pandas.read_csv(url, names=names)
print(dataset.head(10))
# descriptions
print(dataset.describe())
x = dataset.iloc[:,0] #提取第一列的sepal-length变量
mu =np.mean(x) #计算均值
sigma =np.std(x)
mu,sigma

          

以上为通过python导入鸢尾花iris数据,然后提取第一列的sepal-length变量为研究对象,计算出其均值、标准差,接下来就绘制带拟合曲线的直方图。

            
num_bins = 30 #直方图柱子的数量

n, bins, patches = plt.hist(x, num_bins,normed=1, facecolor='blue', alpha=0.5)
#直方图函数,x为x轴的值,normed=1表示为概率密度,即和为一,绿色方块,色深参数0.5.返回n个概率,直方块左边线的x值,及各个方块对象
y = mlab.normpdf(bins, mu, sigma)#拟合一条最佳正态分布曲线y 
plt.plot(bins, y, 'r--') #绘制y的曲线
plt.xlabel('sepal-length') #绘制x轴
plt.ylabel('Probability') #绘制y轴
plt.title(r'Histogram : $\mu=5.8433$,$\sigma=0.8253$')#中文标题 u'xxx' 

plt.subplots_adjust(left=0.15)#左边距 
plt.show() 


          

详解用Python为直方图绘制拟合曲线的两种方法_第1张图片

以上命令主要采用mlab.normpdf基于直方图的柱子数量、均值、方差来拟合曲线,然后再用plot画出来,这种方法的一个缺点就是画出的正态分布拟合曲线(红色虚线)并不一定能很好反映数据的分布情况,如上图所示。

方法二:采用seaborn库中的distplot绘制

Seaborn其实是在matplotlib的基础上进行了更高级的API封装,从而使得作图更加容易,在大多数情况下使用seaborn就能做出很具有吸引力的图,而使用matplotlib就能制作具有更多特色的图。应该把Seaborn视为matplotlib的补充,而不是替代物。

            
import seaborn as sns 
sns.set_palette("hls") #设置所有图的颜色,使用hls色彩空间
sns.distplot(x,color="r",bins=30,kde=True)
plt.show()

          

详解用Python为直方图绘制拟合曲线的两种方法_第2张图片

在这里主要使用sns.distplot(增强版dist),柱子数量bins也设置为30,kde=True表示是否显示拟合曲线,如果为False则只出现直方图。

在这里注意一下它与前边mlab.normpdf方法不同的是,拟合曲线不是正态的,而是更好地拟合了数据的分布情况,如上图,因此比mlab.normpdf更为准确。

进一步设置sns.distplot,可以采用kde_kws(拟合曲线的设置)、hist_kws(直方柱子的设置),可以得到:

            
import seaborn as sns 
import matplotlib as mpl 
sns.set_palette("hls") 
mpl.rc("figure", figsize=(6,4)) 
sns.distplot(x,bins=30,kde_kws={"color":"seagreen", "lw":3 }, hist_kws={ "color": "b" }) 
plt.show()


          

详解用Python为直方图绘制拟合曲线的两种方法_第3张图片

其中,lw为曲线粗细程度。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持脚本之家。


更多文章、技术交流、商务合作、联系博主

微信扫码或搜索:z360901061

微信扫一扫加我为好友

QQ号联系: 360901061

您的支持是博主写作最大的动力,如果您喜欢我的文章,感觉我的文章对您有帮助,请用微信扫描下面二维码支持博主2元、5元、10元、20元等您想捐的金额吧,狠狠点击下面给点支持吧,站长非常感激您!手机微信长按不能支付解决办法:请将微信支付二维码保存到相册,切换到微信,然后点击微信右上角扫一扫功能,选择支付二维码完成支付。

【本文对您有帮助就好】

您的支持是博主写作最大的动力,如果您喜欢我的文章,感觉我的文章对您有帮助,请用微信扫描上面二维码支持博主2元、5元、10元、自定义金额等您想捐的金额吧,站长会非常 感谢您的哦!!!

发表我的评论
最新评论 总共0条评论