深度学习中的Adversarial Examples(基于Python实现)

系统 1562 0

随着深度学习研究的深入,相关应用已经在许多领域展现出惊人的表现。一方面,深度学习的强大能力着实吸引着学术界和产业界的眼球。另外一方面,深度学习的安全问题也开始引起广泛地关注。对于一个给定的深度神经网络,经过训练,它可能在具体任务上(例如图像识别)表现出较高的准确率。但是在原本能够被正确分类的图像中引入稍许(人眼不易察觉)扰动,神经网络模型就可能被误导,从而得出错误的分类结果。例如,下图中最左侧的熊猫图片本来可以被正确分类,向其中加入一定的扰动,结果会得到右侧的熊猫图片。在人眼看来,它仍然是熊猫,但是神经网络模型却以相当高的置信率将其识别成了长臂猿。最右侧这个经过精心调整的能够误导神经网络模型的图像就被称为是恶意样本(Adversarial Example),或简称AE。

深度学习中的Adversarial Examples(基于Python实现)_第1张图片


本文主要介绍两种最基本也最流行的恶意样本(Adversarial Example)的生成算法,我们将在理解原理的基础上用Python编程实现它们。环境是Ubuntu 18.04,深度学习模型以残差神经网络ResNet为例。欢迎关注白马负金羁的博客 ,为保证公式、图表得以正确显示,强烈建议你从该地址(http://blog.csdn.net/baimafujinji)上查看原版博文。本博客主要关注方向包括:数字图像处理、算法设计与分析、数据结构、机器学习、数据挖掘、统计分析方法、自然语言处理。
 


Fast gradient sign method (FGSM)

我们在之前的文章(文章链接)里曾经介绍过一些关


更多文章、技术交流、商务合作、联系博主

微信扫码或搜索:z360901061

微信扫一扫加我为好友

QQ号联系: 360901061

您的支持是博主写作最大的动力,如果您喜欢我的文章,感觉我的文章对您有帮助,请用微信扫描下面二维码支持博主2元、5元、10元、20元等您想捐的金额吧,狠狠点击下面给点支持吧,站长非常感激您!手机微信长按不能支付解决办法:请将微信支付二维码保存到相册,切换到微信,然后点击微信右上角扫一扫功能,选择支付二维码完成支付。

【本文对您有帮助就好】

您的支持是博主写作最大的动力,如果您喜欢我的文章,感觉我的文章对您有帮助,请用微信扫描上面二维码支持博主2元、5元、10元、自定义金额等您想捐的金额吧,站长会非常 感谢您的哦!!!

发表我的评论
最新评论 总共0条评论