我们都知道hadoop主要使用java实现的,那么如何使用python与hadoop生态圈进行交互呢,我看到一篇很好的文章,结合google翻译和自己的认识分享给大家。
您将学习如何从Hadoop Distributed Filesystem直接加载文件内存等信息。将文件从本地移动到HDFS或设置Spark。
from
pathlib
import
Path
import
pandas
as
pd
import
numpy
as
np
spark 安装
首先,安装findspark,以及pyspark,以防您在本地计算机上工作。如果您在Hadoop集群中关注本教程,可以跳过pyspark install。为简单起见,我将使用conda虚拟环境管理器(专业提示:在开始之前创建虚拟环境,不要破坏系统Python安装!)。
!conda install
-
c conda
-
forge findspark
-
y
!conda install
-
c conda
-
forge pyspark
-
y
使用findspark进行Spark设置
import
findspark
# Local Spark
# findspark.init('/home/cloudera/miniconda3/envs/jupyter/lib/python3.7/site-packages/pyspark/')
# Cloudera cluster Spark
findspark
.
init
(
spark_home
=
'/opt/cloudera/parcels/SPARK2-2.3.0.cloudera4-1.cdh5.13.3.p0.611179/lib/spark2/'
)
进入pyspark shell
from
pyspark
.
sql
import
SparkSession
spark
=
SparkSession
.
builder
.
appName
(
'example_app'
)
.
master
(
'local[*]'
)
.
getOrCreate
(
)
让我们获得现有的数据库。我假设您熟悉Spark DataFrame API及其方法:
spark
.
sql
(
"show databases"
)
.
show
(
)
±-----------+
|databaseName|
±-----------+
| __ibis_tmp|
| analytics|
| db1|
| default|
| fhadoop|
| juan|
±-----------+
pandas -> spark
第一个集成是关于如何将数据从pandas库(即用于执行内存数据操作的Python标准库)移动到Spark。首先,让我们加载一个pandas DataFrame。这个是关于马德里的空气质量(只是为了满足您的好奇心,但对于将数据从一个地方移动到另一个地方并不重要)。你可以在这里下载。确保安装pytables以读取hdf5数据。
air_quality_df
=
pd
.
read_hdf
(
'data/air_quality/air-quality-madrid/madrid.h5'
,
key
=
'28079008'
)
air_quality_df
.
head
(
)
BEN | CH4 | CO | EBE | NMHC | NO | NO_2 | NOx | O_3 | PM10 | PM25 | SO_2 | TCH | TOL | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
date | ||||||||||||||
2001-07-01 01:00:00 | 30.65 | NaN | 6.91 | 42.639999 | NaN | NaN | 381.299988 | 1017.000000 | 9.010000 | 158.899994 | NaN | 47.509998 | NaN | 76.050003 |
2001-07-01 02:00:00 | 29.59 | NaN | 2.59 | 50.360001 | NaN | NaN | 209.500000 | 409.200012 | 23.820000 | 104.800003 | NaN | 20.950001 | NaN | 84.900002 |
2001-07-01 03:00:00 | 4.69 | NaN | 0.76 | 25.570000 | NaN | NaN | 116.400002 | 143.399994 | 31.059999 | 48.470001 | NaN | 11.270000 | NaN | 20.980000 |
2001-07-01 04:00:00 | 4.46 | NaN | 0.74 | 22.629999 | NaN | NaN | 116.199997 | 149.300003 | 23.780001 | 47.500000 | NaN | 10.100000 | NaN | 14.770000 |
2001-07-01 05:00:00 | 2.18 | NaN | 0.57 | 11.920000 | NaN | NaN | 100.900002 | 124.800003 | 29.530001 | 49.689999 | NaN | 7.680000 | NaN | 8.970000 |
air_quality_df
.
reset_index
(
inplace
=
True
)
air_quality_df
[
'date'
]
=
air_quality_df
[
'date'
]
.
dt
.
strftime
(
'%Y-%m-%d %H:%M:%S'
)
我们可以简单地从pandas加载到Spark createDataFrame:
air_quality_sdf
=
spark
.
createDataFrame
(
air_quality_df
)
air_quality_sdf
.
dtypes
将DataFrame加载到Spark(如此air_quality_sdf处)后,可以使用PySpark方法轻松操作:
air_quality_sdf
.
select
(
'date'
,
'NOx'
)
.
show
(
5
)
±------------------±-----------------+
| date| NOx|
±------------------±-----------------+
|2001-07-01 01:00:00| 1017.0|
|2001-07-01 02:00:00|409.20001220703125|
|2001-07-01 03:00:00|143.39999389648438|
|2001-07-01 04:00:00| 149.3000030517578|
|2001-07-01 05:00:00|124.80000305175781|
±------------------±-----------------+
only showing top 5 rows
pandas -> spark -> hive
要将Spark DataFrame持久保存到HDFS中,可以使用默认的Hadoop SQL引擎(Hive)进行查询,一个简单的策略(不是唯一的策略)是从该DataFrame创建时间视图:
air_quality_sdf
.
createOrReplaceTempView
(
"air_quality_sdf"
)
创建时态视图后,可以使用Spark SQL引擎创建实时表create table as select。在创建此表之前,我将创建一个名为analytics存储它的新数据库
sql_drop_table
=
"""
drop table if exists analytics.pandas_spark_hive
"""
sql_drop_database
=
"""
drop database if exists analytics cascade
"""
sql_create_database
=
"""
create database if not exists analytics
location '/user/cloudera/analytics/'
"""
sql_create_table
=
"""
create table if not exists analytics.pandas_spark_hive
using parquet
as select to_timestamp(date) as date_parsed, *
from air_quality_sdf
"""
print
(
"dropping database..."
)
result_drop_db
=
spark
.
sql
(
sql_drop_database
)
print
(
"creating database..."
)
result_create_db
=
spark
.
sql
(
sql_create_database
)
print
(
"dropping table..."
)
result_droptable
=
spark
.
sql
(
sql_drop_table
)
print
(
"creating table..."
)
result_create_table
=
spark
.
sql
(
sql_create_table
)
borrando bb
.
dd
.
.
.
creando bb
.
dd
.
.
.
borrando tabla
.
.
.
creando tabla
.
.
.
可以使用Spark SQL引擎检查结果,例如选择臭氧污染物浓度随时间变化:
spark.sql("select * from analytics.pandas_spark_hive").select("date_parsed", "O_3").show(5)
±------------------±-----------------+
| date_parsed| O_3|
±------------------±-----------------+
|2001-07-01 01:00:00| 9.010000228881836|
|2001-07-01 02:00:00| 23.81999969482422|
|2001-07-01 03:00:00|31.059999465942383|
|2001-07-01 04:00:00|23.780000686645508|
|2001-07-01 05:00:00|29.530000686645508|
±------------------±-----------------+
only showing top 5 rows
Apache Arrow
Apache Arrow是一种内存中的柱状数据格式,用于支持大数据环境中的高性能操作(可以将其视为内存等效的parquet格式)。它是用C ++开发的,但它的Python API很棒,你现在可以看到,但首先请安装它:
!conda install pyarrow -y
为了与HDFS建立本地通信,我将使用pyarrow中包含的接口。只有要求是设置一个指向其位置的环境变量libhdfs。请记住,我们处于Cloudera环境中。如果你正在使用Horton必须找到合适的位置(相信我,它存在)。
建立连接
import
pyarrow
as
pa
import
os
os
.
environ
[
'ARROW_LIBHDFS_DIR'
]
=
'/opt/cloudera/parcels/CDH-5.14.4-1.cdh5.14.4.p0.3/lib64/'
hdfs_interface
=
pa
.
hdfs
.
connect
(
host
=
'localhost'
,
port
=
8020
,
user
=
'cloudera'
)
在HDFS中列出文件
让我们列出Spark之前保存的文件。请记住,这些文件先前已从本地文件加载到pandas DataFrame中,然后加载到Spark DataFrame中。Spark默认使用分区为大量snappy压缩文件的文件。在HDFS路径中,您可以标识数据库名称(analytics)和表名称(pandas_spark_hive):
hdfs_interface
.
ls
(
'/user/cloudera/analytics/pandas_spark_hive/'
)
[
'/user/cloudera/analytics/pandas_spark_hive/_SUCCESS'
,
'/user/cloudera/analytics/pandas_spark_hive/part-00000-b4371c8e-0f5c-4d20-a136-a65e56e97f16-c000.snappy.parquet'
,
'/user/cloudera/analytics/pandas_spark_hive/part-00001-b4371c8e-0f5c-4d20-a136-a65e56e97f16-c000.snappy.parquet'
,
'/user/cloudera/analytics/pandas_spark_hive/part-00002-b4371c8e-0f5c-4d20-a136-a65e56e97f16-c000.snappy.parquet'
,
'/user/cloudera/analytics/pandas_spark_hive/part-00003-b4371c8e-0f5c-4d20-a136-a65e56e97f16-c000.snappy.parquet'
,
'/user/cloudera/analytics/pandas_spark_hive/part-00004-b4371c8e-0f5c-4d20-a136-a65e56e97f16-c000.snappy.parquet'
,
'/user/cloudera/analytics/pandas_spark_hive/part-00005-b4371c8e-0f5c-4d20-a136-a65e56e97f16-c000.snappy.parquet'
,
'/user/cloudera/analytics/pandas_spark_hive/part-00006-b4371c8e-0f5c-4d20-a136-a65e56e97f16-c000.snappy.parquet'
,
'
/
user
/
cloudera
/
analytics
/
pandas_spark_hive
/
part
-
00007
-
b4371c8e
-
0f5
Reading parquet files directly from HDFS
要直接从HDFS读取representing文件(或充满表示文件的文件的文件夹),我将使用之前创建的PyArrow HDFS界面:
table
=
hdfs_interface
.
read_parquet
(
'/user/cloudera/analytics/pandas_spark_hive/'
)
HDFS -> pandas
一旦parquetPyArrow HDFS接口读取文件,就会创建一个Table对象。我们可以通过方法轻松回到pandas 使用 to_pandas:
table_df
=
table
.
to_pandas
(
)
table_df
.
head
(
)
/
home
/
cloudera
/
miniconda3
/
envs
/
jupyter
/
lib
/
python3
.
6
/
site
-
packages
/
pyarrow
/
pandas_compat
.
py
:
752
:
FutureWarning
:
.
labels was deprecated
in
version
0.24
.0
.
Use
.
codes instead
.
labels
,
=
index
.
labels
date_parsed | date | BEN | CH4 | CO | EBE | NMHC | NO | NO_2 | NOx | O_3 | PM10 | PM25 | SO_2 | TCH | TOL | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 2001-06-30 23:00:00 | 2001-07-01 01:00:00 | 30.65 | NaN | 6.91 | 42.639999 | NaN | NaN | 381.299988 | 1017.000000 | 9.010000 | 158.899994 | NaN | 47.509998 | NaN | 76.050003 |
1 | 2001-07-01 00:00:00 | 2001-07-01 02:00:00 | 29.59 | NaN | 2.59 | 50.360001 | NaN | NaN | 209.500000 | 409.200012 | 23.820000 | 104.800003 | NaN | 20.950001 | NaN | 84.900002 |
2 | 2001-07-01 01:00:00 | 2001-07-01 03:00:00 | 4.69 | NaN | 0.76 | 25.570000 | NaN | NaN | 116.400002 | 143.399994 | 31.059999 | 48.470001 | NaN | 11.270000 | NaN | 20.980000 |
3 | 2001-07-01 02:00:00 | 2001-07-01 04:00:00 | 4.46 | NaN | 0.74 | 22.629999 | NaN | NaN | 116.199997 | 149.300003 | 23.780001 | 47.500000 | NaN | 10.100000 | NaN | 14.770000 |
4 | 2001-07-01 03:00:00 | 2001-07-01 05:00:00 | 2.18 | NaN | 0.57 | 11.920000 | NaN | NaN | 100.900002 | 124.800003 | 29.530001 | 49.689999 | NaN | 7.680000 | NaN | 8.970000 |
上传本地文件到HDFS
使用PyArrow HDFS接口支持所有类型的HDFS操作,例如,将一堆本地文件上传到HDFS:
cwd
=
Path
(
'./data/'
)
destination_path
=
'/user/cloudera/analytics/data/'
for
f
in
cwd
.
rglob
(
'*.*'
)
:
print
(
f
'uploading {f.name}'
)
with
open
(
str
(
f
)
,
'rb'
)
as
f_upl
:
hdfs_interface
.
upload
(
destination_path
+
f
.
name
,
f_upl
)
uploading sandp500
.
zip
uploading stations
.
csv
uploading madrid
.
h5
uploading diamonds_train
.
csv
uploading diamonds_test
.
csv
让我们检查文件是否已正确上传,列出目标路径中的文件:
hdfs_interface
.
ls
(
destination_path
)
[
'/user/cloudera/analytics/data/diamonds_test.csv'
,
'/user/cloudera/analytics/data/diamonds_train.csv'
,
'/user/cloudera/analytics/data/madrid.h5'
,
'/user/cloudera/analytics/data/sandp500.zip'
,
'/user/cloudera/analytics/data/stations.csv'
]
Reading arbitrary files (not parquet) from HDFS (HDFS -> pandas example
例如,.csv可以使用方法和标准pandas函数将文件从HDFS直接加载到pandas DataFrame中open,read_csv该函数可以获取缓冲区作为输入:
diamonds_train
=
pd
.
read_csv
(
hdfs_interface
.
open
(
'/user/cloudera/analytics/data/diamonds_train.csv'
)
)
diamonds_train
.
head
(
)
carat | cut | color | clarity | depth | table | price | x | y | z | |
---|---|---|---|---|---|---|---|---|---|---|
0 | 1.21 | Premium | J | VS2 | 62.4 | 58.0 | 4268 | 6.83 | 6.79 | 4.25 |
1 | 0.32 | Very Good | H | VS2 | 63.0 | 57.0 | 505 | 4.35 | 4.38 | 2.75 |
2 | 0.71 | Fair | G | VS1 | 65.5 | 55.0 | 2686 | 5.62 | 5.53 | 3.65 |
3 | 0.41 | Good | D | SI1 | 63.8 | 56.0 | 738 | 4.68 | 4.72 | 3.00 |
4 | 1.02 | Ideal | G | SI1 | 60.5 | 59.0 | 4882 | 6.55 | 6.51 | 3.95 |
如果您对该库具有的所有方法和可能性感兴趣,请访问:https://arrow.apache.org/docs/python/filesystems.html#hdfs-api
WebHDFS
有时无法访问libhdfs本机HDFS库(例如,从不属于群集的计算机执行分析)。在这种情况下,我们可以依赖WebHDFS(HDFS服务REST API),它速度较慢,不适合繁重的大数据负载,但在轻量级工作负载的情况下是一个有趣的选择。让我们安装一个WebHDFS Python API:
!conda install
-
c conda
-
forge python
-
hdfs
-
y
Collecting package metadata
:
done
Solving environment
:
done
## Package Plan ##
environment location
:
/
home
/
cloudera
/
miniconda3
/
envs
/
jupyter
added
/
updated specs
:
-
python
-
hdfs
The following packages will be downloaded
:
package
|
build
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
|
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
certifi
-
2019.3
.9
|
py36_0
149
KB conda
-
forge
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Total
:
149
KB
The following packages will be UPDATED
:
ca
-
certificates pkgs
/
main
:
:
ca
-
certificates
-
2019.1
.23
-
0
-
-
>
conda
-
forge
:
:
ca
-
certificates
-
2019.3
.9
-
hecc5488_0
The following packages will be SUPERSEDED by a higher
-
priority channel
:
certifi pkgs
/
main
-
-
>
conda
-
forge
openssl pkgs
/
main
:
:
openssl
-
1.1
.
1b
-
h7b6447c_1
-
-
>
conda
-
forge
:
:
openssl
-
1.1
.
1b
-
h14c3975_1
Downloading
and
Extracting Packages
certifi
-
2019.3
.9
|
149
KB
|
##################################### | 100%
Preparing transaction
:
done
Verifying transaction
:
done
Executing transaction
:
done
建立WebHDFS连接
建立连接
from
hdfs
import
InsecureClient
web_hdfs_interface
=
InsecureClient
(
'http://localhost:50070'
,
user
=
'cloudera'
)
List files in HDFS
列表文件类似于使用PyArrow接口,只需使用list方法和HDFS 路径:
web_hdfs_interface
.
list
(
'/user/cloudera/analytics/data'
)
[
'diamonds_test.csv'
,
'diamonds_train.csv'
,
'madrid.h5'
,
'sandp500.zip'
,
'stations.csv'
]
上传本地文件到HDFS采用WebHDFS
cwd
=
Path
(
'./data/'
)
destination_path
=
'/user/cloudera/analytics/data_web_hdfs/'
for
f
in
cwd
.
rglob
(
'*.*'
)
:
print
(
f
'uploading {f.name}'
)
web_hdfs_interface
.
upload
(
destination_path
+
f
.
name
,
str
(
f
)
,
overwrite
=
True
)
uploading sandp500
.
zip
uploading stations
.
csv
uploading madrid
.
h5
uploading diamonds_train
.
csv
uploading diamonds_test
.
csv
让我们检查上传是否正确:
web_hdfs_interface
.
list
(
destination_path
)
[
'diamonds_test.csv'
,
'diamonds_train.csv'
,
'madrid.h5'
,
'sandp500.zip'
,
'stations.csv'
]
HDFS也可以处理更大的文件(有一些限制)。这些文件来自Kaggle Microsoft恶意软件竞赛, 每个重量为几GB:
web_hdfs_interface
.
upload
(
destination_path
+
'train.parquet'
,
'/home/cloudera/analytics/29_03_2019/notebooks/data/microsoft/train.pq'
,
overwrite
=
True
)
;
web_hdfs_interface
.
upload
(
destination_path
+
'test.parquet'
,
'/home/cloudera/analytics/29_03_2019/notebooks/data/microsoft/test.pq'
,
overwrite
=
True
)
;
使用WebHDFS 从HDFS读取文件(HDFS - > pandas示例)¶
在这种情况下,使用PyArrow parquet模块并传递缓冲区来创建Table对象很有用。之后,可以使用to_pandas方法从Table对象轻松创建pandas DataFrame :
from
pyarrow
import
parquet
as
pq
from
io
import
BytesIO
with
web_hdfs_interface
.
read
(
destination_path
+
'train.parquet'
)
as
reader
:
microsoft_train
=
pq
.
read_table
(
BytesIO
(
reader
.
read
(
)
)
)
.
to_pandas
(
)
microsoft_train
.
head
(
)
MachineIdentifier | ProductName | EngineVersion | AppVersion | AvSigVersion | IsBeta | RtpStateBitfield | IsSxsPassiveMode | DefaultBrowsersIdentifier | AVProductStatesIdentifier | … | Census_FirmwareVersionIdentifier | Census_IsSecureBootEnabled | Census_IsWIMBootEnabled | Census_IsVirtualDevice | Census_IsTouchEnabled | Census_IsPenCapable | Census_IsAlwaysOnAlwaysConnectedCapable | Wdft_IsGamer | Wdft_RegionIdentifier | HasDetections | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 0000028988387b115f69f31a3bf04f09 | win8defender | 1.1.15100.1 | 4.18.1807.18075 | 1.273.1735.0 | 0 | 7.0 | 0 | NaN | 53447.0 | … | 36144.0 | 0 | NaN | 0.0 | 0 | 0 | 0.0 | 0.0 | 10.0 | 0 |
1 | 000007535c3f730efa9ea0b7ef1bd645 | win8defender | 1.1.14600.4 | 4.13.17134.1 | 1.263.48.0 | 0 | 7.0 | 0 | NaN | 53447.0 | … | 57858.0 | 0 | NaN | 0.0 | 0 | 0 | 0.0 | 0.0 | 8.0 | 0 |
2 | 000007905a28d863f6d0d597892cd692 | win8defender | 1.1.15100.1 | 4.18.1807.18075 | 1.273.1341.0 | 0 | 7.0 | 0 | NaN | 53447.0 | … | 52682.0 | 0 | NaN | 0.0 | 0 | 0 | 0.0 | 0.0 | 3.0 | 0 |
3 | 00000b11598a75ea8ba1beea8459149f | win8defender | 1.1.15100.1 | 4.18.1807.18075 | 1.273.1527.0 | 0 | 7.0 | 0 | NaN | 53447.0 | … | 20050.0 | 0 | NaN | 0.0 | 0 | 0 | 0.0 | 0.0 | 3.0 | 1 |
4 | 000014a5f00daa18e76b81417eeb99fc | win8defender | 1.1.15100.1 | 4.18.1807.18075 | 1.273.1379.0 | 0 | 7.0 | 0 | NaN | 53447.0 | … | 19844.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 1.0 | 1 |
5 rows × 83 columns
Hive + Impala
Hive和Impala是Hadoop的两个SQL引擎。一个是基于MapReduce(Hive),而Impala是Cloudera创建和开源的更现代,更快速的内存实现。两个引擎都可以使用其多个API之一从Python中充分利用。在这种情况下,我将向您展示impyla,它支持两个引擎。让我们使用conda安装它,不要忘记安装thrift_sasl0.2.1版本(是的,必须是这个特定的版本,否则它将无法工作):
!conda install impyla thrift_sasl
=
0.2
.1
-
y
## Package Plan ##
environment location
:
/
home
/
cloudera
/
miniconda3
/
envs
/
jupyter
added
/
updated specs
:
-
impyla
-
thrift_sasl
=
0.2
.1
The following packages will be downloaded
:
package
|
build
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
|
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
certifi
-
2019.3
.9
|
py36_0
155
KB
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Total
:
155
KB
The following packages will be SUPERSEDED by a higher
-
priority channel
:
ca
-
certificates conda
-
forge
:
:
ca
-
certificates
-
2019.3
.9
~
-
-
>
pkgs
/
main
:
:
ca
-
certificates
-
2019.1
.23
-
0
certifi conda
-
forge
-
-
>
pkgs
/
main
openssl conda
-
forge
:
:
openssl
-
1.1
.
1b
-
h14c3975_1
-
-
>
pkgs
/
main
:
:
openssl
-
1.1
.
1b
-
h7b6447c_1
Downloading
and
Extracting Packages
certifi
-
2019.3
.9
|
155
KB
|
##################################### | 100%
Preparing transaction
:
done
Verifying transaction
:
done
Executing transaction
:
done
建立连接
from
impala
.
dbapi
import
connect
from
impala
.
util
import
as_pandas
Hive
(
Hive
-
>
pandas example
)
¶
API遵循经典的ODBC标准,您可能对此很熟悉。impyla包括一个名为的实用程序函数as_pandas,可以轻松地将结果(元组列表)解析为pandas DataFrame。谨慎使用它,它存在某些类型的数据问题,并且对大数据工作负载效率不高。以两种方式获取结果:
hive_conn
=
connect
(
host
=
'localhost'
,
port
=
10000
,
database
=
'analytics'
,
auth_mechanism
=
'PLAIN'
)
with
hive_conn
.
cursor
(
)
as
c
:
c
.
execute
(
'SELECT * FROM analytics.pandas_spark_hive LIMIT 100'
)
results
=
c
.
fetchall
(
)
with
hive_conn
.
cursor
(
)
as
c
:
c
.
execute
(
'SELECT * FROM analytics.pandas_spark_hive LIMIT 100'
)
results_df
=
as_pandas
(
c
)
Impala (Impala -> pandas example)
使用Impala遵循与Hive相同的模式,只需确保连接到正确的端口,在这种情况下默认为21050:
impala_conn
=
connect
(
host
=
'localhost'
,
port
=
21050
)
with
impala_conn
.
cursor
(
)
as
c
:
c
.
execute
(
'show databases'
)
result_df
=
as_pandas
(
c
)
name | comment | |
---|---|---|
0 | __ibis_tmp | |
1 | _impala_builtins | System database for Impala builtin functions |
2 | analytics | |
3 | db1 | |
4 | default | Default Hive database |
5 | fhadoop | |
6 | juan |
Ibis Framework
另一种选择是Ibis Framework,它是一个相对庞大的数据源集合的高级API,包括HDFS和Impala。它是围绕使用Python对象和方法对这些源执行操作的想法构建的。让我们以与其他库相同的方式安装它:
!conda install ibis-framework -y
让我们创建一个HDFS和Impala接口(impala需要在Ibis中使用hdfs接口对象):
import
ibis
hdfs_ibis
=
ibis
.
hdfs_connect
(
host
=
'localhost'
,
port
=
50070
)
impala_ibis
=
ibis
.
impala
.
connect
(
host
=
'localhost'
,
port
=
21050
,
hdfs_client
=
hdfs_ibis
,
user
=
'cloudera'
)
创建接口后,可以执行调用方法的操作,无需编写更多SQL。如果您熟悉ORM(对象关系映射器),这不完全相同,但基本思想非常相似。
impala_ibis
.
invalidate_metadata
(
)
impala_ibis
.
list_databases
(
)
[’__ibis_tmp’,
‘_impala_builtins’,
‘analytics’,
‘db1’,
‘default’,
‘fhadoop’,
‘juan’]
Impala -> pandas
ibis本地工作于pandas,因此无需进行转换。读表返回一个pandas DataFrame对象:
table
=
impala_ibis
.
table
(
'pandas_spark_hive'
,
database
=
'analytics'
)
table_df
=
table
.
execute
(
)
table_df
.
head
(
)
pandas–>Impala
从pandas到Impala可以使用Ibis使用Impala接口选择数据库,设置权限(取决于您的群集设置)并使用该方法create,将pandas DataFrame对象作为参数传递:
analytics_db
.
table
(
'diamonds'
)
.
execute
(
)
.
head
(
5
)
carat | cut | color | clarity | depth | table | price | x | y | z | |
---|---|---|---|---|---|---|---|---|---|---|
0 | 1.21 | Premium | J | VS2 | 62.4 | 58.0 | 4268 | 6.83 | 6.79 | 4.25 |
1 | 0.32 | Very Good | H | VS2 | 63.0 | 57.0 | 505 | 4.35 | 4.38 | 2.75 |
2 | 0.71 | Fair | G | VS1 | 65.5 | 55.0 | 2686 | 5.62 | 5.53 | 3.65 |
3 | 0.41 | Good | D | SI1 | 63.8 | 56.0 | 738 | 4.68 | 4.72 | 3.00 |
4 | 1.02 | Ideal | G | SI1 | 60.5 | 59.0 | 4882 | 6.55 | 6.51 | 3.95 |