在
csdn上看到一篇博客“根据乐谱合成钢琴音乐(https://blog.csdn.net/u011478373/article/details/60470332)”,写得不错,非常感兴趣,就把博客中的Python代码拷贝下来运行了一下,结果不行,原因是缺乏了一下关键参数定义,如:
1)wave_data
2)ampli
3)windowsize
分析了一下,将这几个参数补充齐了,删除了部分冗余代码,现在程序可以运行了,可以用Python产生出钢琴音色了,十分好听。由于代码可以运行和调试,可以帮助大家理解音乐生成的原理。下面几张图是生成的钢琴声的波形图、声谱图、谐波特征和衰减特征。代码在后面,大家可以下载运行试试,我用的是Python3.4。
谐波特征和时域衰减特征波形图 声谱图
import wave
import numpy as np
import math
import matplotlib.pyplot as plt
# TO DO: reform it into piano
#-----------------------------------------
#生成正弦波
def gen_sin(amp, f, fs, tau):
#(开始值,结束值,个数)
nT = np.linspace(0,tau, round(tau/(1.0/fs)))#根据步长生成数组,在指定的间隔内返回均匀间隔的数字,返回num个均匀分布的样本,在[start, stop]。
signal =np.array([amp*np.cos(2*np.pi*f*t) for t in nT])
return signal
#model the harmonic feature in frequency domain
#1~15谐波与基频的比例关系
Amp=[1,0.340,0.102,0.085,0.070,0.065,0.028,0.085,0.011,0.030,0.010,0.014,0.012,0.013,0.004]
numharmonic=len(Amp)#谐波个数
wave_data=np.array([0 for i in range(0,40000)])
wave_data = np.reshape(wave_data,[40000,1]).T
pianomusic=[0 for x in range(0,len(wave_data[0]))]
startpoint=0
#model the piano note attenuation feature in the time domain
#对每个钢琴音的时域衰减建模
attenuation=[0 for x in range(0, 8000)]
#the attack stage
for i in range(0,200):
attenuation[i]=i*0.005
#the attenuate stage
#衰减阶段
for i in range(200,800):
attenuation[i]=1-(i-200)*0.001
#the maintain stage
#保持阶段
for i in range(800,4000):
attenuation[i]=0.4-(i-800)*0.000078
for i in range(4000,8000):
attenuation[i]=0.15-(i-4000)*0.0000078
#compose each note in each time quantum
nomalizedbasicfreq=[261.63,261.63,261.63,261.63,293.665,293.665,293.665,293.665,329.628,329.628,329.628,329.628,349.228,349.228,349.228,349.228,391.995,391.995,391.995,391.995,440,440,440,440,493.883,493.883,493.883,493.883,523.251,523.251,523.251,523.251,587.33,587.33,587.33,587.33,659.255,659.255,659.255,659.255]
ampli=[(math.pow(2,2*8-1)-1) for i in range(0,40)]
#40个/4=10
notestime=[4,4,4,4,4,4,4,4,4,4]#10个
windowsize=1000
for w in range(0,len(notestime)):
#计算音符时长
#初始化音符为0
pianonote = [0 for x in range(0, windowsize*notestime[w])] #get the length according to the time of the note
#计算每一个谐音并累加
for i in range(0, numharmonic): #get the note by add each harmonic by the amplitude comparatively with the basic frequency
#产生谐波,参数:幅度,频率,8000 ,结束=0.5
pianonote = pianonote + gen_sin(ampli[startpoint] /50* Amp[i], nomalizedbasicfreq[startpoint] * (i + 1), 8000, 0.125*notestime[w])
#矢量加法
#attenuate the note with the time domain feature
#进行衰减
for k in range(0,windowsize*notestime[w]):#k:0---4000
pianomusic[startpoint*windowsize+k]=pianonote[k]*attenuation[k]
#0--4000 startpoint=0
#4000-8000 =4
#8000-12000 =8
#36*1000---36*1000+4000(40000)4万
startpoint=startpoint+notestime[w] #record the start point of the next note
#startpoint变化规律:0,4,8,12,...32,36
for i in range(0,len(wave_data[0])):
wave_data[0][i]=pianomusic[i]
#get a wave file
f = wave.open(r"pianomusic.wav", "wb")
#get the channel, sampling width and sampling frequency information
#see details in 2.9 of my report
f.setnchannels(1)
f.setsampwidth(2)
f.setframerate(8000)
f.writeframes(wave_data[0].tostring()) #put the data into the wave file
f.close()
print("STEP 9: please see in figure and listen the pianomusic.wav file")
plt.figure()
plt.subplot(211)
plt.plot(Amp)
plt.title(r'frequency domain harmonic feature')
plt.subplot(212)
plt.plot(attenuation)
plt.title(r'time domain attenuation feature')
plt.figure()
plt.plot(pianomusic)
plt.title(r'STEP 9:reform it into piano')
plt.show()