python

系统 1393 0

sklearn.preprocessing.RobustScaler:

            
              Init signature:
RobustScaler(
    with_centering=True,
    with_scaling=True,
    quantile_range=(25.0, 75.0),
    copy=True,
)
Docstring:     
Scale features using statistics that are robust to outliers.

This Scaler removes the median and scales the data according to
the quantile range (defaults to IQR: Interquartile Range).
The IQR is the range between the 1st quartile (25th quantile)
and the 3rd quartile (75th quantile).

Centering and scaling happen independently on each feature by
computing the relevant statistics on the samples in the training
set. Median and interquartile range are then stored to be used on
later data using the ``transform`` method.

Standardization of a dataset is a common requirement for many
machine learning estimators. Typically this is done by removing the mean
and scaling to unit variance. However, outliers can often influence the
sample mean / variance in a negative way. In such cases, the median and
the interquartile range often give better results.

.. versionadded:: 0.17

Read more in the :ref:`User Guide 
              
                `.

Parameters
----------
with_centering : boolean, True by default
    If True, center the data before scaling.
    This will cause ``transform`` to raise an exception when attempted on
    sparse matrices, because centering them entails building a dense
    matrix which in common use cases is likely to be too large to fit in
    memory.

with_scaling : boolean, True by default
    If True, scale the data to interquartile range.

quantile_range : tuple (q_min, q_max), 0.0 < q_min < q_max < 100.0
    Default: (25.0, 75.0) = (1st quantile, 3rd quantile) = IQR
    Quantile range used to calculate ``scale_``.

    .. versionadded:: 0.18

copy : boolean, optional, default is True
    If False, try to avoid a copy and do inplace scaling instead.
    This is not guaranteed to always work inplace; e.g. if the data is
    not a NumPy array or scipy.sparse CSR matrix, a copy may still be
    returned.

Attributes
----------
center_ : array of floats
    The median value for each feature in the training set.

scale_ : array of floats
    The (scaled) interquartile range for each feature in the training set.

    .. versionadded:: 0.17
       *scale_* attribute.

Examples
--------
>>> from sklearn.preprocessing import RobustScaler
>>> X = [[ 1., -2.,  2.],
...      [ -2.,  1.,  3.],
...      [ 4.,  1., -2.]]
>>> transformer = RobustScaler().fit(X)
>>> transformer  # doctest: +NORMALIZE_WHITESPACE
RobustScaler(copy=True, quantile_range=(25.0, 75.0), with_centering=True,
       with_scaling=True)
>>> transformer.transform(X)
array([[ 0. , -2. ,  0. ],
       [-1. ,  0. ,  0.4],
       [ 1. ,  0. , -1.6]])

See also
--------
robust_scale: Equivalent function without the estimator API.

:class:`sklearn.decomposition.PCA`
    Further removes the linear correlation across features with
    'whiten=True'.

Notes
-----
For a comparison of the different scalers, transformers, and normalizers,
see :ref:`examples/preprocessing/plot_all_scaling.py

                
                  `.

https://en.wikipedia.org/wiki/Median
https://en.wikipedia.org/wiki/Interquartile_range
File:           c:\users\huawei\appdata\local\programs\python\python36\lib\site-packages\sklearn\preprocessing\data.py
Type:           type
Subclasses:     

                
              
            
          

更多文章、技术交流、商务合作、联系博主

微信扫码或搜索:z360901061

微信扫一扫加我为好友

QQ号联系: 360901061

您的支持是博主写作最大的动力,如果您喜欢我的文章,感觉我的文章对您有帮助,请用微信扫描下面二维码支持博主2元、5元、10元、20元等您想捐的金额吧,狠狠点击下面给点支持吧,站长非常感激您!手机微信长按不能支付解决办法:请将微信支付二维码保存到相册,切换到微信,然后点击微信右上角扫一扫功能,选择支付二维码完成支付。

【本文对您有帮助就好】

您的支持是博主写作最大的动力,如果您喜欢我的文章,感觉我的文章对您有帮助,请用微信扫描上面二维码支持博主2元、5元、10元、自定义金额等您想捐的金额吧,站长会非常 感谢您的哦!!!

发表我的评论
最新评论 总共0条评论