转载自https://blog.csdn.net/sinat_37011812/article/details/81842957
双线性插值
公式就是这么推来的,主要就是在x方向和y方向上都进行线性插值,利用临近点进行计算
在计算的时候利用了几何中心对齐来优化原来的直接缩放
__author__ = 'Alex Wang'
import numpy as np
import cv2
import time
'''
python implementation of bilinear interpolation
'''
def bilinear_interpolation(img,out_dim):
src_h, src_w, channel = img.shape
dst_h, dst_w = out_dim[1], out_dim[0]
if src_h == dst_h and src_w == dst_w:
return img.copy()
dst_img = np.zeros((dst_h,dst_w,3),dtype=np.uint8)
scale_x, scale_y = float(src_w) / dst_w, float(src_h) / dst_h
for i in range(3):
for dst_y in range(dst_h):
for dst_x in range(dst_w):
# find the origin x and y coordinates of dst image x and y
# use geometric center symmetry
# if use direct way, src_x = dst_x * scale_x
src_x = (dst_x + 0.5) * scale_x - 0.5
src_y = (dst_y + 0.5) * scale_y - 0.5
# find the coordinates of the points which will be used to compute the interpolation
src_x0 = int(np.floor(src_x))
src_x1 = min(src_x0 + 1 ,src_w - 1)
src_y0 = int(np.floor(src_y))
src_y1 = min(src_y0 + 1, src_h - 1)
# calculate the interpolation
temp0 = (src_x1 - src_x) * img[src_y0,src_x0,i] + (src_x - src_x0) * img[src_y0,src_x1,i]
temp1 = (src_x1 - src_x) * img[src_y1,src_x0,i] + (src_x - src_x0) * img[src_y1,src_x1,i]
dst_img[dst_y,dst_x,i] = int((src_y1 - src_y) * temp0 + (src_y - src_y0) * temp1)
return dst_img
if __name__ == '__main__':
img = cv2.imread('data/cat1.jpg')
start = time.time()
dst = bilinear_interpolation(img,(100,100))
print 'cost %f seconds' % (time.time() - start)
cv2.imshow('result',dst)
cv2.waitKey()
References:
https://blog.csdn.net/xbinworld/article/details/65660665
https://blog.csdn.net/wudi_X/article/details/79782832
https://en.wikipedia.org/wiki/Bilinear_interpolation