python-opencv在有噪音的情况下提取图像的轮廓实例

系统 1970 0

对于一般的图像提取轮廓,介绍了一个很好的方法,但是对于有噪声的图像,并不能很好地捕获到目标物体。

比如对于我的鼠标,提取的轮廓效果并不好,因为噪声很多:

python-opencv在有噪音的情况下提取图像的轮廓实例_第1张图片

所以本文增加了去掉噪声的部分。

首先加载原始图像,并显示图像

            
img = cv2.imread("temp.jpg")    #载入图像
h, w = img.shape[:2]      #获取图像的高和宽 
cv2.imshow("Origin", img) 
          

python-opencv在有噪音的情况下提取图像的轮廓实例_第2张图片

然后进行低通滤波处理,进行降噪

            
blured = cv2.blur(img,(5,5))    #进行滤波去掉噪声
cv2.imshow("Blur", blured)     #显示低通滤波后的图像
          

python-opencv在有噪音的情况下提取图像的轮廓实例_第3张图片

使用floodfill来去掉目标周围的背景,泛洪填充类始于ps的魔棒工具,这里用来清除背景。

python-opencv在有噪音的情况下提取图像的轮廓实例_第4张图片

然后转换成灰度图

            
gray = cv2.cvtColor(blured,cv2.COLOR_BGR2GRAY) 
cv2.imshow("gray", gray) 
          

python-opencv在有噪音的情况下提取图像的轮廓实例_第5张图片

此时目标图像周围有写不光滑,还有一些噪声,因此进行开闭运算,得到比较光滑的目标

            
#定义结构元素 
kernel = cv2.getStructuringElement(cv2.MORPH_RECT,(50, 50))
#开闭运算,先开运算去除背景噪声,再继续闭运算填充目标内的孔洞
opened = cv2.morphologyEx(gray, cv2.MORPH_OPEN, kernel) 
closed = cv2.morphologyEx(opened, cv2.MORPH_CLOSE, kernel) 
cv2.imshow("closed", closed)
          

python-opencv在有噪音的情况下提取图像的轮廓实例_第6张图片

接着转换成二值图以便于获取图像的轮廓

python-opencv在有噪音的情况下提取图像的轮廓实例_第7张图片

最后进行轮廓提取,抓取到目标

            
#找到轮廓
_,contours, hierarchy = cv2.findContours(binary,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE) 
#绘制轮廓
cv2.drawContours(img,contours,-1,(0,0,255),3) 
#绘制结果
cv2.imshow("result", img)
          

python-opencv在有噪音的情况下提取图像的轮廓实例_第8张图片

全部代码如下

            
#coding=utf-8 
import cv2 
import numpy as np

img = cv2.imread("temp.jpg")    #载入图像
h, w = img.shape[:2]      #获取图像的高和宽 
cv2.imshow("Origin", img)     #显示原始图像

blured = cv2.blur(img,(5,5))    #进行滤波去掉噪声
cv2.imshow("Blur", blured)     #显示低通滤波后的图像

mask = np.zeros((h+2, w+2), np.uint8)  #掩码长和宽都比输入图像多两个像素点,满水填充不会超出掩码的非零边缘 
#进行泛洪填充
cv2.floodFill(blured, mask, (w-1,h-1), (255,255,255), (2,2,2),(3,3,3),8)
cv2.imshow("floodfill", blured) 

#得到灰度图
gray = cv2.cvtColor(blured,cv2.COLOR_BGR2GRAY) 
cv2.imshow("gray", gray) 


#定义结构元素 
kernel = cv2.getStructuringElement(cv2.MORPH_RECT,(50, 50))
#开闭运算,先开运算去除背景噪声,再继续闭运算填充目标内的孔洞
opened = cv2.morphologyEx(gray, cv2.MORPH_OPEN, kernel) 
closed = cv2.morphologyEx(opened, cv2.MORPH_CLOSE, kernel) 
cv2.imshow("closed", closed) 

#求二值图
ret, binary = cv2.threshold(closed,250,255,cv2.THRESH_BINARY) 
cv2.imshow("binary", binary) 

#找到轮廓
_,contours, hierarchy = cv2.findContours(binary,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE) 
#绘制轮廓

cv2.drawContours(img,contours,-1,(0,0,255),3) 
#绘制结果
cv2.imshow("result", img)

cv2.waitKey(0) 
cv2.destroyAllWindows()
          

以上这篇python-opencv在有噪音的情况下提取图像的轮廓实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持脚本之家。


更多文章、技术交流、商务合作、联系博主

微信扫码或搜索:z360901061

微信扫一扫加我为好友

QQ号联系: 360901061

您的支持是博主写作最大的动力,如果您喜欢我的文章,感觉我的文章对您有帮助,请用微信扫描下面二维码支持博主2元、5元、10元、20元等您想捐的金额吧,狠狠点击下面给点支持吧,站长非常感激您!手机微信长按不能支付解决办法:请将微信支付二维码保存到相册,切换到微信,然后点击微信右上角扫一扫功能,选择支付二维码完成支付。

【本文对您有帮助就好】

您的支持是博主写作最大的动力,如果您喜欢我的文章,感觉我的文章对您有帮助,请用微信扫描上面二维码支持博主2元、5元、10元、自定义金额等您想捐的金额吧,站长会非常 感谢您的哦!!!

发表我的评论
最新评论 总共0条评论