库函数tf.conv2d()卷积的python实现

系统 1382 0

话不多说,代码说话:

            
              import numpy as np
import math
class Conv2D(object):
	def __init__(self, shape, output_channels, ksize=3, stride=1, method='VALID'):
		self.input_shape = shape
		self.output_channels = output_channels
		self.input_channels = shape[-1]
		self.batchsize = shape[0]
		self.stride = stride
		self.ksize = ksize
		self.method = method
		weights_scale = math.sqrt(ksize*ksize*self.input_channels/2)
		self.weights = np.random.standard_normal((ksize, ksize, self.input_channels, self.output_channels)) // weights_scale
		self.bias = np.random.standard_normal(self.output_channels) // weights_scale
		if method == 'VALID':
			self.eta = np.zeros((shape[0], (shape[1] - ksize ) // self.stride + 1, (shape[1] - ksize ) // self.stride + 1,self.output_channels))

		if method == 'SAME':
			self.eta = np.zeros((shape[0], shape[1]//self.stride, shape[2]//self.stride,self.output_channels))

		self.w_gradient = np.zeros(self.weights.shape)
		self.b_gradient = np.zeros(self.bias.shape)
		self.output_shape = self.eta.shape

	def forward(self,x):
		col_weights = self.weights.reshape([-1,self.output_channels])
		if self.method == 'SAME':
		   x = np.pad(x, ((0, 0), (self.ksize // 2, self.ksize // 2), (self.ksize // 2, self.ksize // 2), (0, 0)),'constant', constant_values=0)

		self.col_image = []
		conv_out = np.zeros(self.eta.shape)

		for i in range(self.batchsize):
			img_i = x[i][np.newaxis,...]
			self.col_image_i = self.im2col(img_i,self.ksize,self.stride)
			print(col_weights.shape)
			conv_out[i] = np.reshape(np.dot(self.col_image_i,col_weights)+self.bias, self.eta[0].shape)

			self.col_image.append(self.col_image_i)
		
		return conv_out

			# self.col_image = np.array(self.col_image)

			# return conv_out
	
	def im2col(self,image,k_size,stride):
		image_col = []
		for i in range(0,image.shape[1] - k_size+1,stride):
			for j in range(0,image.shape[2]-k_size+1,stride):
				# print("......:", image[:,i:i+k_size,j:j+k_size,:].shape)
				col = image[:,i:i+k_size,j:j+k_size,:].reshape([-1])
				image_col.append(col)
		
		image_col = np.array(image_col)
		print(image_col.shape)

		return image_col


if __name__ == '__main__':

	conv2d = Conv2D([5,10,10,3],32,3,1,'VALID')
	input_data = np.random.standard_normal((5,10,10,3))
	print("input:",input_data.shape)

	conv_out = conv2d.forward(input_data)

	print(conv_out.shape)



            
          

更多文章、技术交流、商务合作、联系博主

微信扫码或搜索:z360901061

微信扫一扫加我为好友

QQ号联系: 360901061

您的支持是博主写作最大的动力,如果您喜欢我的文章,感觉我的文章对您有帮助,请用微信扫描下面二维码支持博主2元、5元、10元、20元等您想捐的金额吧,狠狠点击下面给点支持吧,站长非常感激您!手机微信长按不能支付解决办法:请将微信支付二维码保存到相册,切换到微信,然后点击微信右上角扫一扫功能,选择支付二维码完成支付。

【本文对您有帮助就好】

您的支持是博主写作最大的动力,如果您喜欢我的文章,感觉我的文章对您有帮助,请用微信扫描上面二维码支持博主2元、5元、10元、自定义金额等您想捐的金额吧,站长会非常 感谢您的哦!!!

发表我的评论
最新评论 总共0条评论