本文使用的数据类型是数值型,每一个样本6个特征表示,所用的数据如图所示:
图中A,B,C,D,E,F列表示六个特征,G表示样本标签。每一行数据即为一个样本的六个特征和标签。
实现Bagging算法的代码如下:
from sklearn.ensemble import BaggingClassifier from sklearn.tree import DecisionTreeClassifier from sklearn.preprocessing import StandardScaler import csv from sklearn.cross_validation import train_test_split from sklearn.metrics import accuracy_score from sklearn.metrics import confusion_matrix from sklearn.metrics import classification_report data=[] traffic_feature=[] traffic_target=[] csv_file = csv.reader(open('packSize_all.csv')) for content in csv_file: content=list(map(float,content)) if len(content)!=0: data.append(content) traffic_feature.append(content[0:6])//存放数据集的特征 traffic_target.append(content[-1])//存放数据集的标签 print('data=',data) print('traffic_feature=',traffic_feature) print('traffic_target=',traffic_target) scaler = StandardScaler() # 标准化转换 scaler.fit(traffic_feature) # 训练标准化对象 traffic_feature= scaler.transform(traffic_feature) # 转换数据集 feature_train, feature_test, target_train, target_test = train_test_split(traffic_feature, traffic_target, test_size=0.3,random_state=0) tree=DecisionTreeClassifier(criterion='entropy', max_depth=None) # n_estimators=500:生成500个决策树 clf = BaggingClassifier(base_estimator=tree, n_estimators=500, max_samples=1.0, max_features=1.0, bootstrap=True, bootstrap_features=False, n_jobs=1, random_state=1) clf.fit(feature_train,target_train) predict_results=clf.predict(feature_test) print(accuracy_score(predict_results, target_test)) conf_mat = confusion_matrix(target_test, predict_results) print(conf_mat) print(classification_report(target_test, predict_results))
运行结果如图所示:
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持脚本之家。