Python函数编程——迭代器

系统 1355 0

Python函数编程——迭代器

我们已经知道,可以直接作用于 for 循环的数据类型有以下几种:

1、类是集合数据类型,如 list tuple dict set str 等;

2、一类是 generator ,包括生成器和带 yield 的generator function。

这些可以直接作用于 for 循环的对象统称为 可迭代对象:Iterable,可迭代的意思就是可遍历、可循环。

可以使用 isinstance() 判断一个对象是否是 Iterable 对象:

          
            >>> from collections import Iterable
>>> isinstance([], Iterable)
True
>>> isinstance({}, Iterable)
True
>>> isinstance('abc', Iterable)
True
>>> isinstance((x for x in range(10)), Iterable)
True
>>> isinstance(100, Iterable)
False
          
        

而生成器不但可以作用于for循环,还可以被next()函数不断调用并返回下一个值,直到最后抛出StopIteration错误表示无法继续返回下一个值了。

可以被next()函数调用并不断返回下一个值的对象称为迭代器:Iterator。

生成器都是 Iterator 对象,但 list dict str 虽然是 Iterable ,却不是 Iterator

list dict str Iterable 变成 Iterator 可以使用 iter() 函数:

          
            >>> isinstance(iter([]), Iterator)
True
>>> isinstance(iter('abc'), Iterator)
True
          
        

你可能会问,为什么 list dict str 等数据类型不是 Iterator

这是因为Python的 Iterator 对象表示的是一个数据流,Iterator对象可以被 next() 函数调用并不断返回下一个数据,直到没有数据时抛出 StopIteration 错误。可以把这个数据流看做是一个有序序列,但我们却不能提前知道序列的长度,只能不断通过 next() 函数实现按需计算下一个数据,所以 Iterator 的计算是惰性的,只有在需要返回下一个数据时它才会计算。

Iterator 甚至可以表示一个无限大的数据流,例如全体自然数。而使用list是永远不可能存储全体自然数的。

总结

凡是可作用于 for 循环的对象都是 Iterable 类型;

凡是可作用于 next() 函数的对象都是 Iterator 类型,它们表示一个惰性计算的序列;

集合数据类型如 list dict str 等是 Iterable 但不是 Iterator ,不过可以通过 iter() 函数获得一个 Iterator 对象。


更多文章、技术交流、商务合作、联系博主

微信扫码或搜索:z360901061

微信扫一扫加我为好友

QQ号联系: 360901061

您的支持是博主写作最大的动力,如果您喜欢我的文章,感觉我的文章对您有帮助,请用微信扫描下面二维码支持博主2元、5元、10元、20元等您想捐的金额吧,狠狠点击下面给点支持吧,站长非常感激您!手机微信长按不能支付解决办法:请将微信支付二维码保存到相册,切换到微信,然后点击微信右上角扫一扫功能,选择支付二维码完成支付。

【本文对您有帮助就好】

您的支持是博主写作最大的动力,如果您喜欢我的文章,感觉我的文章对您有帮助,请用微信扫描上面二维码支持博主2元、5元、10元、自定义金额等您想捐的金额吧,站长会非常 感谢您的哦!!!

发表我的评论
最新评论 总共0条评论