python 绘制拟合曲线并加指定点标识
import os import numpy as np from scipy import log from scipy.optimize import curve_fit import matplotlib.pyplot as plt import math from sklearn.metrics import r2_score # 字体 plt.rcParams['font.sans-serif']=['SimHei'] # 拟合函数 def func(x, a, b): # y = a * log(x) + b y = x/(a*x+b) return y # 拟合的坐标点 x0 = [2, 4, 8, 10, 24, 28, 32, 48] y0 = [6.66,8.35,10.81,11.55,13.63,13.68,13.69,13.67] # 拟合,可选择不同的method result = curve_fit(func, x0, y0,method='trf') a, b = result[0] # 绘制拟合曲线用 x1 = np.arange(2, 48, 0.1) #y1 = a * log(x1) + b y1 = x1/(a*x1+b) x0 = np.array(x0) y0 = np.array(y0) # 计算r2 y2 = x0/(a*x0+b) #y2 = a * log(x0) + b r2 = r2_score(y0, y2) #plt.figure(figsize=(7.5, 5)) # 坐标字体大小 plt.tick_params(labelsize=11) # 原数据散点 plt.scatter(x0,y0,s=30,marker='o') # 横纵坐标起止 plt.xlim((0, 50)) plt.ylim((0, round(max(y0))+2)) # 拟合曲线 plt.plot(x1, y1, "blue") plt.title("标题",fontsize=13) plt.xlabel('X(h)',fontsize=12) plt.ylabel('Y(%)',fontsize=12) # 指定点,y=9时求x p = round(9*b/(1-9*a),2) #p = b/(math.log(9/a)) p = round(p, 2) # 显示坐标点 plt.scatter(p,9,s=20,marker='x') # 显示坐标点横线、竖线 plt.vlines(p, 0, 9, colors = "c", linestyles = "dashed") plt.hlines(9, 0, p, colors = "c", linestyles = "dashed") # 显示坐标点坐标值 plt.text(p, 9, (float('%.2f'% p),9),ha='left', va='top', fontsize=11) # 显示公式 m = round(max(y0)/10,1) print(m) plt.text(48, m, 'y= x/('+str(round(a,2))+'*x+'+str(round(b,2))+')', ha='right',fontsize=12) plt.text(48, m, r'$R^2=$'+str(round(r2,3)), ha='right', va='top',fontsize=12) # True 显示网格 # linestyle 设置线显示的类型(一共四种) # color 设置网格的颜色 # linewidth 设置网格的宽度 plt.grid(True, linestyle = "--", color = "g", linewidth = "0.5") plt.show()
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持脚本之家。