[Python3]pandas.merge用法详解

系统 1657 0

摘要

数据分析与建模的时候大部分时间在数据准备上,包括对数据的加载、清理、转换以及重塑。pandas提供了一组高级的、灵活的、高效的核心函数,能够轻松的将数据规整化。这节主要对pandas合并数据集的merge函数进行详解。(用过SQL或其他关系型数据库的可能会对这个方法比较熟悉。) 码字不易,喜欢请点赞!!!

1.merge函数的参数一览表
[Python3]pandas.merge用法详解_第1张图片
[Python3]pandas.merge用法详解_第2张图片

2.创建两个DataFrame
[Python3]pandas.merge用法详解_第3张图片

3.pd.merge()方法设置连接字段。
默认参数how是inner内连接,并且会按照相同的字段key进行合并,即等价于on=‘key’。
[Python3]pandas.merge用法详解_第4张图片

也可以显示的设置on=‘key’,这里也推荐这么做。
[Python3]pandas.merge用法详解_第5张图片

当两边合并字段不同时,可以使用left_on和right_on参数设置合并字段。当然这里合并字段都是key所以left_on和right_on参数值都是key。
[Python3]pandas.merge用法详解_第6张图片

4.pd.merge()方法设置连接方法。
主要包括inner(内连接)、outer(外链接)、left(左连接)、right(右连接)。
参数how默认值是inner内连接,上面的都是采用内连接,连接两边都有的值。
当采用outer外连接时,会取并集,并用NaN填充。
[Python3]pandas.merge用法详解_第7张图片
外连接其实左连接和右连接的并集。左连接是左侧DataFrame取全部数据,右侧DataFrame匹配左侧DataFrame。(右连接right和左连接类似)
[Python3]pandas.merge用法详解_第8张图片

5.pd.merge()方法索引连接,以及重复列名命名。
pd.merge()方法可以通过设置left_index或者right_index的值为True来使用索引连接,例如这里df1使用data1当连接关键字,而df2使用索引当连接关键字。
[Python3]pandas.merge用法详解_第9张图片

从上面可以发现两个DataFrame中都有key列,merge合并之后,pandas会自动在后面加上(_x,_y)来区分,我们也可以通过设置suffixes来设置名字。
[Python3]pandas.merge用法详解_第10张图片

姊妹篇:pandas.concat用法详解!!!


更多文章、技术交流、商务合作、联系博主

微信扫码或搜索:z360901061

微信扫一扫加我为好友

QQ号联系: 360901061

您的支持是博主写作最大的动力,如果您喜欢我的文章,感觉我的文章对您有帮助,请用微信扫描下面二维码支持博主2元、5元、10元、20元等您想捐的金额吧,狠狠点击下面给点支持吧,站长非常感激您!手机微信长按不能支付解决办法:请将微信支付二维码保存到相册,切换到微信,然后点击微信右上角扫一扫功能,选择支付二维码完成支付。

【本文对您有帮助就好】

您的支持是博主写作最大的动力,如果您喜欢我的文章,感觉我的文章对您有帮助,请用微信扫描上面二维码支持博主2元、5元、10元、自定义金额等您想捐的金额吧,站长会非常 感谢您的哦!!!

发表我的评论
最新评论 总共0条评论