Python中的相关分析correlation analysis的实现

系统 1779 0

相关分析(correlation analysis)

研究两个或两个以上随机变量之间相互依存关系的方向和密切程度的方法。
线性相关关系主要采用皮尔逊(Pearson)相关系数r来度量连续变量之间线性相关强度;
r>0,线性正相关;r<0,线性负相关;
r=0,两个变量之间不存在线性关系,并不代表两个变量之间不存在任何关系。

Python中的相关分析correlation analysis的实现_第1张图片

相关分析函数
DataFrame.corr()
Series.corr(other)

函数说明:
如果由数据框调用corr函数,那么将会计算每个列两两之间的相似度
如果由序列调用corr方法,那么只是该序列与传入的序列之间的相关度

返回值:
DataFrame调用;返回DataFrame

Series调用:返回一个数值型,大小为相关度

            
import numpy
import pandas
 
data = pandas.read_csv(
  'C:/Users/ZL/Desktop/Python/5.4/data.csv'
)
 
bins = [
  min(data.年龄)-1, 20, 30, 40, max(data.年龄)+1
]
labels = [
  '20岁以及以下', '21岁到30岁', '31岁到40岁', '41岁以上'
]
 
data['年龄分层'] = pandas.cut(
  data.年龄, 
  bins, 
  labels=labels
)
 
ptResult = data.pivot_table(
  values=['年龄'], 
  index=['年龄分层'], 
  columns=['性别'], 
  aggfunc=[numpy.size]
 File "
            
              ", line 25
  aggfunc=[numpy.size]
            ^
SyntaxError: unexpected EOF while parsing
 
 
import numpy
import pandas
 
data = pandas.read_csv(
  'C:/Users/ZL/Desktop/Python/5.4/data.csv'
)
 
bins = [
  min(data.年龄)-1, 20, 30, 40, max(data.年龄)+1
]
labels = [
  '20岁以及以下', '21岁到30岁', '31岁到40岁', '41岁以上'
]
 
data['年龄分层'] = pandas.cut(
  data.年龄, 
  bins, 
  labels=labels
)
 
ptResult = data.pivot_table(
  values=['年龄'], 
  index=['年龄分层'], 
  columns=['性别'], 
  aggfunc=[numpy.size]
)
 
ptResult
Out[4]: 
     size    
      年龄    
性别     女   男
年龄分层        
20岁以及以下  111  1950
21岁到30岁 2903 43955
31岁到40岁  735  7994
41岁以上   567  886
            
          

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持脚本之家。


更多文章、技术交流、商务合作、联系博主

微信扫码或搜索:z360901061

微信扫一扫加我为好友

QQ号联系: 360901061

您的支持是博主写作最大的动力,如果您喜欢我的文章,感觉我的文章对您有帮助,请用微信扫描下面二维码支持博主2元、5元、10元、20元等您想捐的金额吧,狠狠点击下面给点支持吧,站长非常感激您!手机微信长按不能支付解决办法:请将微信支付二维码保存到相册,切换到微信,然后点击微信右上角扫一扫功能,选择支付二维码完成支付。

【本文对您有帮助就好】

您的支持是博主写作最大的动力,如果您喜欢我的文章,感觉我的文章对您有帮助,请用微信扫描上面二维码支持博主2元、5元、10元、自定义金额等您想捐的金额吧,站长会非常 感谢您的哦!!!

发表我的评论
最新评论 总共0条评论