"""python提取文本的tfidf特征"""
import math
from collections import Counter
# 1.语料库
corpus = [
'this is the first document',
'this is the second second document',
'and the third one',
'is this the first document'
]
# 2.对语料进行分词
word_list = []
for i in range(len(corpus)):
word_list.append(corpus[i].split(' '))
print('2-->', word_list)
# 3.统计词频
countlist = []
for i in range(len(word_list)):
count = Counter(word_list[i])
countlist.append(count)
print('3词频-->', countlist)
# 4.定义计算tfidf公式的函数
# count[word]可以得到每个单词的词频, sum(count.values())得到整个句子的单词总数
def tf(word, count):
return count[word] / sum(count.values())
# 统计的是含有该单词的句子数
def n_containing(word, count_list):
return sum(1 for count in count_list if word in count)
# len(count_list)是指句子的总数,n_containing(word, count_list)是指含有该单词的句子的总数,加1是为了防止分母为0
def idf(word, count_list):
return math.log(len(count_list) / (1 + n_containing(word, count_list)))
# 将tf和idf相乘
def tfidf(word, count, count_list):
return tf(word, count) * idf(word, count_list)
all_dict = {}
for counte in countlist:
counter = dict(counte)
for k, v in counter.items():
try:
all_dict[k] += v
except:
all_dict[k] = v
print('merge-->', all_dict)
with open('tf.txt', 'w+') as tfin, open('idf.txt', 'w+') as idfin:
for k in all_dict.keys():
# k_tf = tf(k, all_dict)
tfin.write(k + ' ' + str(all_dict[k]) + '\n')
k_idf = idf(k, countlist)
idfin.write(k + ' ' + str(k_idf) + '\n')