import math
import numpy as np
import matplotlib.pyplot as plt
from sympy import * #用于求导积分等科学计算
def dif(left,right,step):#求导 左右区间以及间隔
x,y = symbols('x y')#引入x y变量
expr = pow(x,5)#计算表达式
x_value = [] #save x value
y_value = [] #save x f(x) value
y_value_dif = [] #save x f(x)_dot value
y_value_dif2 = [] #save x f(x)_dot2 value
y_value_dif3 = [] #save x f(x)_dot3 value
y_value_dif4 = [] #save x f(x)_dot4 value
#print(expand(exp(I*x), complex=True))#将复指数展开成实部虚部形式
expr_dif = diff(expr,x,1)
expr_dif2 = diff(expr,x,2)
expr_dif3 = diff(expr,x,3)
expr_dif4 = diff(expr,x,4)
for i in np.arange(left,right,step):
x_value.append(i)
y_value.append(expr.subs('x',i))#将i值代入表达式
y_value_dif.append(expr_dif.subs('x',i))#将i值代入求导表达式
y_value_dif2.append(expr_dif2.subs('x',i))#将i值代入2阶求导表达式
y_value_dif3.append(expr_dif3.subs('x',i))#将i值代入3阶求导表达式
y_value_dif4.append(expr_dif4.subs('x',i))#将i值代入4阶求导表达式
draw_plot_set()#设置画图格式
plt.plot(x_value,y_value,"b-",linewidth=1,label='f(x)='+str(expr)) #画图
plt.plot(x_value,y_value_dif,"r-",linewidth=1,label='f(x)_prim') #画图
plt.plot(x_value,y_value_dif2,"y-",linewidth=1,label='f(x)_prim2') #画图
plt.plot(x_value,y_value_dif3,"g-",linewidth=1,label='f(x)_prim3') #画图
plt.plot(x_value,y_value_dif4,"b-",linewidth=1,label='f(x)_prim4') #画图
plt.legend()#显示图例
plt.show()#显示图像
def draw_plot_set():#设置画图格式
plt.figure()
ax = plt.gca()
#改变坐标轴位置
ax.spines['right'].set_color('none')#删除原来轴
ax.spines['top'].set_color('none')#删除原来轴
ax.xaxis.set_ticks_position('bottom')#在0点处增加轴
ax.spines['bottom'].set_position(('data',0))
ax.yaxis.set_ticks_position('left')#在0点处增加轴
ax.spines['left'].set_position(('data',0))
#设置坐标名
plt.ylabel('f(x)')
plt.xlabel('x')
plt.grid(True)#打开网格
if __name__ == '__main__':
dif(-5,5,0.01)
运行结果