from math import sqrt

def sim_distance(p1,p2):

    c=set(p1.keys())&set(p2.keys())

    if not c: return 0

    sum_of_squares=sum([pow(p1.get(sk)-p2.get(sk), 2 ) for sk in c])

    p= 1 /( 1 +sqrt(sum_of_squares))

    return p

def sim_distance_pir(p1,p2):

    c=set(p1.keys())&set(p2.keys())

    if not c: return 0

    s1=sum([p1.get(sk) for sk in c])

    s2=sum([p2.get(sk) for sk in c])

    sq1=sum([pow(p1.get(sk), 2 ) for sk in c])

    sq2=sum([pow(p2.get(sk), 2 ) for sk in c])

    ss=sum([p1.get(sk)*p2.get(sk) for sk in c])

    n=len(c)

    num=ss-(s1*s2/n)

    den=sqrt((sq1-pow(s1, 2 )/n)*(sq2-pow(s2, 2 )/n))

    #print s1,s2,sq1,sq2,ss,n,num,den

    if den== 0 : return 0

    p=num/den

    return p

def sim_distance_jacc(p1,p2):

    c=set(p1.keys())&set(p2.keys())

    if not c: return 0

    ss=sum([p1.get(sk)*p2.get(sk) for sk in c])

    sq1=sum([pow(sk, 2 ) for sk in p1.values()])

    sq2=sum([pow(sk, 2 ) for sk in p2.values()])

    p=float(ss)/(sq1 + sq2 - ss)

    return p

 

def sim_distance_cos(p1,p2):

    c=set(p1.keys())&set(p2.keys())

    if not c: return 0

    ss=sum([p1.get(sk)*p2.get(sk) for sk in c])

    sq1=sqrt(sum([pow(sk, 2 ) for sk in p1.values()]))

    sq2=sqrt(sum([pow(sk, 2 ) for sk in p2.values()]))

    p=float(ss )/(sq1*sq2)

    return p

#

#a={'a':4.5,'b':1.0,'c':7}

 

from distance import *

def topsimilar(item,data,n= 5 ,sim_func=sim_distance):

    score=[(sim_func(data.get(item),data.get(ik)),ik) for ik in data.keys() if ik!=item]

    score.sort()

    score.reverse()

    return score

prefs= {

        "A" : { "1" : 3 , "2" : 4 , "3" : 0 , "4" : 3 , "5" : 3 },

        "B" : { "1" : 2 , "2" : 3 , "3" : 2 },

        "C" : { "1" : 2 , "2" : 4 , "3" : 4 , "4" : 3 , "5" : 0 },

        "D" : { "1" : 0 , "2" : 4 , "3" : 0 , "4" : 2 , "5" : 4 }

}

print topsimilar( 'A' , prefs,)

print topsimilar( 'A' , prefs,sim_func=sim_distance_pir)

print topsimilar( 'A' , prefs,sim_func=sim_distance_cos)

print topsimilar( 'A' , prefs,sim_func=sim_distance_jacc)