LeetCode:Distinct Subsequences
Given a string S and a string T , count the number of distinct subsequences of T in S .
A subsequence of a string is a new string which is formed from the original string by deleting some (can be none) of the characters without disturbing the relative positions of the remaining characters. (ie,
"ACE"
is a subsequence of
"ABCDE"
while
"AEC"
is not).
Here is an example:
S
=
"rabbbit"
,
T
=
"rabbit"
Return
3
.
题目大意:删除S中某些位置的字符可以得到T,总共有几种不同的删除方法
设S的长度为lens,T的长度为lent
算法1 :递归解法,首先,从个字符串S的尾部开始扫描,找到第一个和T最后一个字符相同的位置k,那么有下面两种匹配:a. T的最后一个字符和S[k]匹配,b. T的最后一个字符不和S[k]匹配。a相当于子问题:从S[0...lens-2]中删除几个字符得到T[0...lent-2],b相当于子问题:从S[0...lens-2]中删除几个字符得到T[0...lent-1]。那么总的删除方法等于a、b两种情况的删除方法的和。递归解法代码如下,但是通过大数据会超时:
1 class Solution { 2 public : 3 int numDistinct( string S, string T) { 4 // IMPORTANT: Please reset any member data you declared, as 5 // the same Solution instance will be reused for each test case. 6 return numDistanceRecur(S, S.length()- 1 , T, T.length()- 1 ); 7 } 8 int numDistanceRecur( string &S, int send, string &T, int tend) 9 { 10 if (tend < 0 ) return 1 ; 11 else if (send < 0 ) return 0 ; 12 while (send >= 0 && S[send] != T[tend])send-- ; 13 if (send < 0 ) return 0 ; 14 return numDistanceRecur(S,send- 1 ,T,tend- 1 ) + numDistanceRecur(S,send- 1 ,T,tend); 15 } 16 };
算法2 :动态规划,设dp[i][j]是从字符串S[0...i]中删除几个字符得到字符串T[0...j]的不同的删除方法种类,有上面递归的分析可知,动态规划方程如下
- 如果S[i] = T[j], dp[i][j] = dp[i-1][j-1]+dp[i-1][j]
- 如果S[i] 不等于 T[j], dp[i][j] = dp[i-1][j]
- 初始条件:当T为空字符串时,从任意的S删除几个字符得到T的方法为1
代码如下: 本文地址
1 class Solution { 2 public : 3 int numDistinct( string S, string T) { 4 // IMPORTANT: Please reset any member data you declared, as 5 // the same Solution instance will be reused for each test case. 6 int lens = S.length(), lent = T.length(); 7 if (lent == 0 ) return 1 ; 8 else if (lens == 0 ) return 0 ; 9 int dp[lens+ 1 ][lent+ 1 ]; 10 memset(dp, 0 , sizeof (dp)); 11 for ( int i = 0 ; i <= lens; i++)dp[i][ 0 ] = 1 ; 12 for ( int i = 1 ; i <= lens; i++ ) 13 { 14 for ( int j = 1 ; j <= lent; j++ ) 15 { 16 if (S[i- 1 ] == T[j- 1 ]) 17 dp[i][j] = dp[i- 1 ][j- 1 ]+dp[i- 1 ][j]; 18 else dp[i][j] = dp[i- 1 ][j]; 19 } 20 } 21 return dp[lens][lent]; 22 } 23 };
【版权声明】转载请注明出处: http://www.cnblogs.com/TenosDoIt/p/3440022.html