POJ 3415 Max Sum of Max-K-sub-sequence (线

系统 1833 0

 

 

Max Sum of Max-K-sub-sequence

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 5084    Accepted Submission(s): 1842

Problem Description
Given a circle sequence A[1],A[2],A[3]......A[n]. Circle sequence means the left neighbour of A[1] is A[n] , and the right neighbour of A[n] is A[1].
Now your job is to calculate the max sum of a Max-K-sub-sequence. Max-K-sub-sequence means a continuous non-empty sub-sequence which length not exceed K.
 

 

Input
The first line of the input contains an integer T(1<=T<=100) which means the number of test cases. 
Then T lines follow, each line starts with two integers N , K(1<=N<=100000 , 1<=K<=N), then N integers followed(all the integers are between -1000 and 1000).
 

 

Output
For each test case, you should output a line contains three integers, the Max Sum in the sequence, the start position of the sub-sequence, the end position of the sub-sequence. If there are more than one result, output the minimum start position, if still more than one , output the minimum length of them.
 

 

Sample Input
4 6 3 6 -1 2 -6 5 -5 6 4 6 -1 2 -6 5 -5 6 3 -1 2 -6 5 -5 6 6 6 -1 -1 -1 -1 -1 -1
 

 

Sample Output
7 1 3 7 1 3 7 6 2 -1 1 1
 

 

Author
shǎ崽@HDU
 

 

Source
 

 

Recommend
lcy
 
 

 

题目大意:T 组数据,求 n 个数 连续子串的最大和是多少,子串要求长度不超过 k,以及这是个环形,如果多解,满足起点be最小,其次终点en最小

解题思路:枚举每个起点be,终点en一定是在 be<=en<=be+k-1 这个范围内,所以求这个范围内的连续最长和即可,可以用 sum[en] -sum[be-1] ,其中sum[x]表示前x个数的和,所以即选出 be<=en<=be+k-1这个范围内最大sum[i],用线段树过了,但是rmq算法超时,郁闷!


线段树算法,AC

 

      #include <iostream>

#include <cmath>

#include <cstdio>

using namespace std;



const int maxn=200010;

int d[maxn],sum[maxn],n,k,mx,mn;



struct node{

	int l,r,minc,maxc;

}a[4*maxn];



void input(){

	scanf("%d%d",&n,&k);

	for(int i=1;i<=n;i++){

		scanf("%d",&d[i]);

		d[i+n]=d[i];

	}

	sum[0]=0;

	for(int i=1;i<=2*n;i++) sum[i]=sum[i-1]+d[i];

}



void build(int l,int r,int k){

	a[k].l=l;

	a[k].r=r;

	if(l<r){

		int mid=(l+r)/2;

		build(l,mid,2*k);

		build(mid+1,r,2*k+1);

		a[k].maxc=max(a[2*k].maxc,a[2*k+1].maxc);

		a[k].minc=min(a[2*k].minc,a[2*k+1].minc);

	}else{

		a[k].maxc=sum[l];

		a[k].minc=sum[l];

	}

}



void query(int l,int r,int k){

	if(l<=a[k].l && a[k].r<=r){

		//cout<<a[k].maxc<<" "<<a[k].minc<<endl;

		mx=max(mx,a[k].maxc);

		mn=min(mn,a[k].minc);

	}else{

		int mid=(a[k].l+a[k].r)/2;

		if(r<=mid) query(l,r,2*k);

		else if(l>=mid+1) query(l,r,2*k+1);

		else{

			query(l,mid,2*k);

			query(mid+1,r,2*k+1);

		}

	}

}



void computing(){

	build(0,2*n,1);

	int ans=-(1<<30),be=1,en=1;

    for(int i=1;i<=n;i++){

    	mx=-(1<<30);

		query(i,i+k-1,1);

        if(mx-sum[i-1]>ans){

            ans=mx-sum[i-1];

            be=i;

        }

    }

    for(int i=be;i<=be+k-1;i++){

        if(sum[i]-sum[be-1]==ans){

            en=i;

            break;

        } 

    }

    printf("%d %d %d\n",ans,be>n?be-n:be,en>n?en-n:en);

}



int main(){

	int t;

	scanf("%d",&t);

	while(t-- >0){

		input();

		computing();

	}

	return 0;

}
    

rmq算法,超时,郁闷中

 

 

      #include <iostream>

#include <cmath>

#include <cstdio>

using namespace std;



const int maxn=300005*2;

int maxsum[maxn][20],minsum[maxn][20],flog[maxn],d[maxn],sum[maxn],n,k;



void ini(){

    int r=2,cnt=0;

    for(int i=1;i<maxn;i++){

        if(i<r) flog[i]=cnt;

        else{

            flog[i]=++cnt;

            r=r<<1;

        }

    }

}



void input(){

    scanf("%d%d",&n,&k);

    for(int i=1;i<=n;i++){

        scanf("%d",&d[i]);

        d[i+n]=d[i];

    }

}



void getrmq(){

    for(int i=1;i<=2*n;i++){

        sum[i]=sum[i-1]+d[i];

        maxsum[i][0]=sum[i];

        minsum[i][0]=sum[i];    

    }

    for(int j=1;j<=flog[2*n];j++)

    for(int i=1;i<=2*n;i++){

        if(i+(1<<j)-1<=2*n){

            maxsum[i][j]=max(maxsum[i][j-1],maxsum[i+(1<<(j-1))][j-1]);

            minsum[i][j]=min(minsum[i][j-1],minsum[i+(1<<(j-1))][j-1]);

        }

    }

}



void computing(){

    getrmq();

    int ans=-(1<<30),be=1,en=1,l,r,x,tmp;

    for(int i=1;i<=n;i++){

        l=i,r=i-1+k,x=flog[r-l+1];

        tmp=max(maxsum[l][x],maxsum[r-(1<<x)+1][x]);

        if(tmp-sum[i-1]>ans){

            ans=tmp-sum[i-1];

            be=i;

        }

    }

    for(int i=be;i<=be+k-1;i++){

        if(sum[i]-sum[be-1]==ans){

            en=i;

            break;

        } 

    }

    printf("%d %d %d\n",ans,be>n?be-n:be,en>n?en-n:en);

}



int main(){

    ini();

    int t;

    scanf("%d",&t);

    while(t-- >0){

        input();

        computing();

    }

    return 0;

}
    


 


 

 

POJ 3415 Max Sum of Max-K-sub-sequence (线段树+dp思想)


更多文章、技术交流、商务合作、联系博主

微信扫码或搜索:z360901061

微信扫一扫加我为好友

QQ号联系: 360901061

您的支持是博主写作最大的动力,如果您喜欢我的文章,感觉我的文章对您有帮助,请用微信扫描下面二维码支持博主2元、5元、10元、20元等您想捐的金额吧,狠狠点击下面给点支持吧,站长非常感激您!手机微信长按不能支付解决办法:请将微信支付二维码保存到相册,切换到微信,然后点击微信右上角扫一扫功能,选择支付二维码完成支付。

【本文对您有帮助就好】

您的支持是博主写作最大的动力,如果您喜欢我的文章,感觉我的文章对您有帮助,请用微信扫描上面二维码支持博主2元、5元、10元、自定义金额等您想捐的金额吧,站长会非常 感谢您的哦!!!

发表我的评论
最新评论 总共0条评论