POJ 2777 Count Color(线段树+位运算)

系统 1509 0

题目链接: http://poj.org/problem?id=2777


Description

Chosen Problem Solving and Program design as an optional course, you are required to solve all kinds of problems. Here, we get a new problem. 

There is a very long board with length L centimeter, L is a positive integer, so we can evenly divide the board into L segments, and they are labeled by 1, 2, ... L from left to right, each is 1 centimeter long. Now we have to color the board - one segment with only one color. We can do following two operations on the board: 

1. "C A B C" Color the board from segment A to segment B with color C. 
2. "P A B" Output the number of different colors painted between segment A and segment B (including). 

In our daily life, we have very few words to describe a color (red, green, blue, yellow…), so you may assume that the total number of different colors T is very small. To make it simple, we express the names of colors as color 1, color 2, ... color T. At the beginning, the board was painted in color 1. Now the rest of problem is left to your. 

Input

First line of input contains L (1 <= L <= 100000), T (1 <= T <= 30) and O (1 <= O <= 100000). Here O denotes the number of operations. Following O lines, each contains "C A B C" or "P A B" (here A, B, C are integers, and A may be larger than B) as an operation defined previously.

Output

Ouput results of the output operation in order, each line contains a number.

Sample Input

      2 2 4
C 1 1 2
P 1 2
C 2 2 2
P 1 2

    

Sample Output

      2
1

    

Source


题意:

给一个固定长度为L的画板

有两个操作:

C A B C:区间A--B内涂上颜色C。

P A B:查询区间AB内颜色种类数。

PS:

此题和 HDU:5023 是类似的!

附题解: http://blog.csdn.net/u012860063/article/details/39434665


代码例如以下:

      #include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;

#define lson l , mid , rt << 1
#define rson mid + 1 , r , rt << 1 | 1
#define LL int

const int maxn = 110017;
LL add[maxn<<2];
LL sum[maxn<<2];
void PushUp(int rt)
{
    //把当前结点的信息更新到父结点
    sum[rt] = sum[rt<<1] | sum[rt<<1|1];//总共的颜色
}
void PushDown(int rt,int m)
{
    if(add[rt])
    {
        add[rt<<1] = add[rt];
        add[rt<<1|1] = add[rt];
        sum[rt<<1] = add[rt];
        sum[rt<<1|1] = add[rt];
        add[rt] = 0;//将标记向儿子节点移动后,父节点的延迟标记去掉
        //传递后,当前节点标记域清空
    }
}
void build(int l,int r,int rt)
{
    add[rt] = 0;//初始化为全部结点未被标记
    if (l == r)
    {
        sum[rt] = 1;//初始颜色为1
        return ;
    }
    int mid = (l + r) >> 1;
    build(lson);
    build(rson);
    PushUp(rt);
}
void update(int L,int R,int c,int l,int r,int rt)
{
    if (L <= l && r <= R)
    {
        add[rt] =1<<(c-1);//位运算左移表示有某种颜色
        sum[rt] =1<<(c-1);
        return ;
    }
    PushDown(rt , r - l + 1);//----延迟标志域向下传递
    int mid = (l + r) >> 1;
    if (L <= mid)
        update(L , R , c , lson);//更新左儿子
    if (mid < R)
        update(L , R , c , rson);//更新右儿子
    PushUp(rt);
}
LL query(int L,int R,int l,int r,int rt)
{
    if (L <= l && r <= R)
    {
        return sum[rt];
    }
    //要取rt子节点的值时,也要先把rt的延迟标记向下移动
    PushDown(rt , r - l + 1);
    int mid = (l + r) >> 1;
    LL ret = 0;
    if (L <= mid)
        ret |= query(L , R , lson);
    if (mid < R)
        ret |= query(L , R , rson);
    return ret;
}
int main()
{
    int L, T, O;
    int a, b, c;
    while(~scanf("%d%d%d",&L,&T,&O))
    {
        build(1, L, 1);//建树
        while(O--)//Q为询问次数
        {
            char op[2];
            scanf("%s",op);
            if(op[0] == 'P')
            {
                scanf("%d%d",&a,&b);
                if(a > b)
                {
                    int t = a;
                    a = b;
                    b = t;
                }
                LL tt=query(a, b, 1, L, 1);
                int ans = 0;
                while(tt)
                {
                    if(tt&1)
                    {
                        ans++;
                    }
                    tt>>=1;
                }
                printf("%d\n",ans);
            }
            else
            {
                scanf("%d%d%d",&a,&b,&c);
                if(a > b)
                {
                    int t = a;
                    a = b;
                    b = t;
                }
                update(a, b, c, 1, L, 1);
            }
        }
    }
    return 0;
}

    



POJ 2777 Count Color(线段树+位运算)


更多文章、技术交流、商务合作、联系博主

微信扫码或搜索:z360901061

微信扫一扫加我为好友

QQ号联系: 360901061

您的支持是博主写作最大的动力,如果您喜欢我的文章,感觉我的文章对您有帮助,请用微信扫描下面二维码支持博主2元、5元、10元、20元等您想捐的金额吧,狠狠点击下面给点支持吧,站长非常感激您!手机微信长按不能支付解决办法:请将微信支付二维码保存到相册,切换到微信,然后点击微信右上角扫一扫功能,选择支付二维码完成支付。

【本文对您有帮助就好】

您的支持是博主写作最大的动力,如果您喜欢我的文章,感觉我的文章对您有帮助,请用微信扫描上面二维码支持博主2元、5元、10元、自定义金额等您想捐的金额吧,站长会非常 感谢您的哦!!!

发表我的评论
最新评论 总共0条评论