Password Attacker

系统 1770 0

Passwords are widely used in our lives: for ATMs, online forum logins, mobile device unlock and door access. Everyone cares about password security. However, attackers always find ways to steal our passwords. Here is one possible situation:

Assume that Eve, the attacker, wants to steal a password from the victim Alice. Eve cleans up the keyboard beforehand. After Alice types the password and leaves, Eve collects the fingerprints on the keyboard. Now she knows which keys are used in the password. However, Eve won't know how many times each key has been pressed or the order of the keystroke sequence.

To simplify the problem, let's assume that Eve finds Alice's fingerprints only occurs on M keys. And she knows, by another method, that Alice's password contains N characters. Furthermore, every keystroke on the keyboard only generates a single, unique character. Also, Alice won't press other irrelevant keys like 'left', 'home', 'backspace' and etc.

Here's an example. Assume that Eve finds Alice's fingerprints on M=3 key '3', '7' and '5', and she knows that Alice's password is N=4-digit in length. So all the following passwords are possible: 3577, 3557, 7353 and 5735. (And, in fact, there are 32 more possible passwords.)

However, these passwords are not possible:

1357 // There is no fingerprint on key '1'
3355 // There is fingerprint on key '7',
so '7' must occur at least once.
357 // Eve knows the password must be a 4-digit number.
With the information, please count that how many possible passwords satisfy the statements above. Since the result could be large, please output the answer modulo 1000000007(109+7).

Input

The first line of the input gives the number of test cases, T.
For the next T lines, each contains two space-separated numbers M and N, indicating a test case.

Output

For each test case, output one line containing "Case #x: y", where x is the test case number (starting from 1) and y is the total number of possible passwords modulo 1000000007(109+7).

Limits

Small dataset

T = 15.
1 ≤ M ≤ N ≤ 7.
Large dataset

T = 100.
1 ≤ M ≤ N ≤ 100.
Sample

Input
4
1 1
3 4
5 5
15 15

Output 

Case #1: 1
Case #2: 36
Case #3: 120
Case #4: 674358851

google在线笔试题。这题一直没做出来。有人说有公式,看到大牛们提交的代码又觉得像是dp。后来学了生成函数之后,觉得应该是一道指数型生成函数的题。

      
         1
      
       #include <iostream>


      
         2
      
       #include <cstdio>


      
         3
      
       #include <vector>


      
         4
      
      
         5
      
      
        using
      
      
        namespace
      
      
         std;


      
      
         6
      
      
        const
      
      
        double
      
       epi = 
      
        0.000001
      
      
        ;


      
      
         7
      
      
        int
      
       frac(
      
        int
      
      
         k) {


      
      
         8
      
      
        int
      
       ans = 
      
        1
      
      
        ;


      
      
         9
      
      
        for
      
       (
      
        int
      
       i = 
      
        2
      
      ; i <= k; ++
      
        i) {


      
      
        10
      
               ans *=
      
         i;


      
      
        11
      
      
            }


      
      
        12
      
      
        return
      
      
         ans;


      
      
        13
      
      
        }


      
      
        14
      
      
        15
      
      
        int
      
       enumPassword(
      
        int
      
       n, 
      
        int
      
      
         m) {


      
      
        16
      
           vector<vector<
      
        double
      
      > > 
      
        params
      
      (
      
        2
      
      , vector<
      
        double
      
      >(n + 
      
        1
      
      , 
      
        0
      
      
        ));


      
      
        17
      
      
        params
      
      [
      
        0
      
      ][
      
        0
      
      ] = 
      
        1
      
      
        ;


      
      
        18
      
      
        int
      
       cur = 
      
        0
      
      , next = 
      
        1
      
      
        ;


      
      
        19
      
      
        20
      
      
        for
      
       (
      
        int
      
       i = 
      
        0
      
      ; i < m; ++
      
        i) {


      
      
        21
      
      
        params
      
      [next].assign(n + 
      
        1
      
      , 
      
        0
      
      
        );


      
      
        22
      
      
        for
      
       (
      
        int
      
       j = 
      
        0
      
      ; j <= n; ++
      
        j) {


      
      
        23
      
      
        if
      
       (
      
        params
      
      [cur][j] < epi) 
      
        continue
      
      
        ;


      
      
        24
      
      
        for
      
       (
      
        int
      
       k = 
      
        1
      
      ; k + j <= n; ++
      
        k) {


      
      
        25
      
      
        params
      
      [next][k + j] = 
      
        params
      
      [next][k + j] + 
      
        params
      
      [cur][j] * 
      
        1
      
       /
      
         frac(k);


      
      
        26
      
      
                    }


      
      
        27
      
      
                }


      
      
        28
      
               cur = !cur; next = !
      
        next;


      
      
        29
      
      
            }


      
      
        30
      
      
        31
      
      
        return
      
      
        params
      
      [cur][n] *
      
         frac(n);


      
      
        32
      
      
        }


      
      
        33
      
      
        34
      
      
        int
      
       main(
      
        int
      
       argc, 
      
        char
      
      **
      
         argv) {


      
      
        35
      
      
        if
      
       (argc < 
      
        2
      
      ) 
      
        return
      
       -
      
        1
      
      
        ;


      
      
        36
      
           freopen(argv[
      
        1
      
      ], 
      
        "
      
      
        r
      
      
        "
      
      
        , stdin);


      
      
        37
      
      
        int
      
      
         test; 


      
      
        38
      
           scanf(
      
        "
      
      
        %d
      
      
        "
      
      , &
      
        test);


      
      
        39
      
      
        for
      
       (
      
        int
      
       i = 
      
        0
      
      ; i < test; ++
      
        i) {


      
      
        40
      
      
        int
      
      
         m, n;


      
      
        41
      
               scanf(
      
        "
      
      
        %d%d
      
      
        "
      
      , &m, &
      
        n);


      
      
        42
      
               cout << 
      
        "
      
      
        Case #
      
      
        "
      
       << i + 
      
        1
      
       << 
      
        "
      
      
        : 
      
      
        "
      
       << enumPassword(n, m) <<
      
         endl;


      
      
        43
      
      
            }


      
      
        44
      
      
        45
      
      
        return
      
      
        0
      
      
        ;


      
      
        46
      
       }
    

但是数太大,要取模。除操作不能直接除模。

在网上搜到一个定理:

定理12.2:设$a_n$,$b_n$的指数生成函数分别为f(x)和g(x),则:

$f(x)*g(x) = \sum_{n=0}^{\infty}c_n\frac{x^n}{n!}, c_n = \sum_{k=0}^{n}C(n,k)a_kb_{n-k}$。

对应到我们这里,Line 25里就变成params[cur][j]*1*C(j+k, k),params[cur][j]对应的是$\frac{x^j}{j!}$的系数,1对应的是$\frac{x^k}{k!}$,所以乘以的就是C(j+k, k)了。

代码如下:

      
         1
      
       #include <iostream>


      
         2
      
       #include <cstdio>


      
         3
      
       #include <vector>


      
         4
      
      
         5
      
      
        using
      
      
        namespace
      
      
         std;


      
      
         6
      
      
        enum
      
       {MOD = 
      
        1000000007
      
      
        };


      
      
         7
      
       typedef 
      
        long
      
      
        long
      
      
         llong;


      
      
         8
      
       llong combination[
      
        100
      
      ][
      
        100
      
      
        ];


      
      
         9
      
      
        void
      
      
         getCombination() {


      
      
        10
      
      
        for
      
       (
      
        int
      
       i = 
      
        0
      
      ; i <= 
      
        100
      
      ; ++
      
        i) {


      
      
        11
      
      
        for
      
       (
      
        int
      
       j = 
      
        0
      
      ; j <= i; ++
      
        j) {


      
      
        12
      
      
        if
      
       (j == 
      
        0
      
      
        ) { 


      
      
        13
      
                   combination[i][j] = 
      
        1
      
      
        ;


      
      
        14
      
                   } 
      
        else
      
      
         {


      
      
        15
      
                       combination[i][j] = (combination[i - 
      
        1
      
      ][j] + combination[i - 
      
        1
      
      ][j - 
      
        1
      
      ]) %
      
         MOD;


      
      
        16
      
      
                    }


      
      
        17
      
      
                }


      
      
        18
      
      
            }


      
      
        19
      
      
        }


      
      
        20
      
      
        21
      
       llong enumPassword(
      
        int
      
       n, 
      
        int
      
      
         m) {


      
      
        22
      
           vector<vector<llong> > 
      
        params
      
      (
      
        2
      
      , vector<llong>(n + 
      
        1
      
      , 
      
        0
      
      
        ));


      
      
        23
      
      
        params
      
      [
      
        0
      
      ][
      
        0
      
      ] = 
      
        1
      
      
        ;


      
      
        24
      
      
        int
      
       cur = 
      
        0
      
      , next = 
      
        1
      
      
        ;


      
      
        25
      
      
        26
      
      
        for
      
       (
      
        int
      
       i = 
      
        0
      
      ; i < m; ++
      
        i) {


      
      
        27
      
      
        params
      
      [next].assign(n + 
      
        1
      
      , 
      
        0
      
      
        );


      
      
        28
      
      
        for
      
       (
      
        int
      
       j = 
      
        0
      
      ; j <= n; ++
      
        j) {


      
      
        29
      
      
        if
      
       (
      
        params
      
      [cur][j] == 
      
        0
      
      ) 
      
        continue
      
      
        ;


      
      
        30
      
      
        for
      
       (
      
        int
      
       k = 
      
        1
      
      ; k + j <= n; ++
      
        k) {


      
      
        31
      
      
        params
      
      [next][k + j] = (
      
        params
      
      [next][k + j] + 
      
        params
      
      [cur][j] * combination[j + k][k]) %
      
         MOD;


      
      
        32
      
      
                    }


      
      
        33
      
      
                }


      
      
        34
      
               cur = !cur; next = !
      
        next;


      
      
        35
      
      
            }


      
      
        36
      
      
        37
      
      
        return
      
      
        params
      
      
        [cur][n];


      
      
        38
      
      
        }


      
      
        39
      
      
        40
      
      
        int
      
       main(
      
        int
      
       argc, 
      
        char
      
      **
      
         argv) {


      
      
        41
      
      
        if
      
       (argc < 
      
        2
      
      ) 
      
        return
      
       -
      
        1
      
      
        ;


      
      
        42
      
           freopen(argv[
      
        1
      
      ], 
      
        "
      
      
        r
      
      
        "
      
      
        , stdin);


      
      
        43
      
      
        if
      
       (argc >= 
      
        3
      
      ) freopen(argv[
      
        2
      
      ], 
      
        "
      
      
        w
      
      
        "
      
      
        , stdout);


      
      
        44
      
      
            getCombination();


      
      
        45
      
      
        int
      
      
         test; 


      
      
        46
      
           scanf(
      
        "
      
      
        %d
      
      
        "
      
      , &
      
        test);


      
      
        47
      
      
        for
      
       (
      
        int
      
       i = 
      
        0
      
      ; i < test; ++
      
        i) {


      
      
        48
      
      
        int
      
      
         m, n;


      
      
        49
      
               scanf(
      
        "
      
      
        %d%d
      
      
        "
      
      , &m, &
      
        n);


      
      
        50
      
      
        //
      
      
        cout << "Case #" << i + 1 << ": " << enumPassword(n, m) << endl;
      
      
        51
      
               printf(
      
        "
      
      
        Case #%d: %lld\n
      
      
        "
      
      , i + 
      
        1
      
      
        , enumPassword(n, m));


      
      
        52
      
      
            }


      
      
        53
      
      
        54
      
      
        return
      
      
        0
      
      
        ;


      
      
        55
      
       }
    

注意这里求组合数要用递推公式来求,这样可以在运算中取模,避免溢出。

$C(n, m) = C(n - 1, m) + C(n - 1, m - 1)$。

以后指数型生成函数的题都可以这么做。get!

Password Attacker


更多文章、技术交流、商务合作、联系博主

微信扫码或搜索:z360901061

微信扫一扫加我为好友

QQ号联系: 360901061

您的支持是博主写作最大的动力,如果您喜欢我的文章,感觉我的文章对您有帮助,请用微信扫描下面二维码支持博主2元、5元、10元、20元等您想捐的金额吧,狠狠点击下面给点支持吧,站长非常感激您!手机微信长按不能支付解决办法:请将微信支付二维码保存到相册,切换到微信,然后点击微信右上角扫一扫功能,选择支付二维码完成支付。

【本文对您有帮助就好】

您的支持是博主写作最大的动力,如果您喜欢我的文章,感觉我的文章对您有帮助,请用微信扫描上面二维码支持博主2元、5元、10元、自定义金额等您想捐的金额吧,站长会非常 感谢您的哦!!!

发表我的评论
最新评论 总共0条评论