如何理解统计中的特征函数?

系统 1812 0
引入特征函数是非常自然的事情:
  • 在实际应用中,逐个测量事件空间中的各事件发生的概率(或者分布函数)是极端困难的,相反,对大多数分布而言,矩(平均值、方差以及各种高阶矩)往往是容易被测量的;
  • 在问题变得复杂之后,再来计算矩(例如均值、方差等等)的时候,如果我们知道分布函数,那么我们要做的是求和与积分,而如果我们知道特征函数,在计算矩的时候,我们要做的只是微分,而通常,求导会比直接积分更容易,而且可以针对各阶矩有更统一的形式。
而因为考虑到这两个因素,再加上 Fourier 空间跟实空间可以一一对应起来,所以大家就更喜欢特征函数了。

接下来,Laplace 变换行不行?当然也可以,这其实是一码事。统计物理学家很熟悉的「配分函数」也就是一个特征函数: Z = \int _0^\infty g(E) e^{-\beta E}dE ,它就对应于态密度 g(E) 的Laplace 变换。对物理学家而言,喜欢用逆温度(Laplace),或者喜欢用虚时间(Fourier)这其实是一码事的,如果在这种时候用虚时间来写,一个好处是显得高端大气,另一个好处是可以与路径积分联系起来,而且,Laplace 变换用的时候总得要写「正半轴」之类的东西,写起来太麻烦。

如何理解统计中的特征函数?


更多文章、技术交流、商务合作、联系博主

微信扫码或搜索:z360901061

微信扫一扫加我为好友

QQ号联系: 360901061

您的支持是博主写作最大的动力,如果您喜欢我的文章,感觉我的文章对您有帮助,请用微信扫描下面二维码支持博主2元、5元、10元、20元等您想捐的金额吧,狠狠点击下面给点支持吧,站长非常感激您!手机微信长按不能支付解决办法:请将微信支付二维码保存到相册,切换到微信,然后点击微信右上角扫一扫功能,选择支付二维码完成支付。

【本文对您有帮助就好】

您的支持是博主写作最大的动力,如果您喜欢我的文章,感觉我的文章对您有帮助,请用微信扫描上面二维码支持博主2元、5元、10元、自定义金额等您想捐的金额吧,站长会非常 感谢您的哦!!!

发表我的评论
最新评论 总共0条评论