Follow up for N-Queens problem.
Now, instead outputting board configurations, return the total number of distinct solutions.
#include<iostream> #include <vector> #include <cmath> using namespace std; class Solution { public : int res= 0 ; int totalNQueens( int n) { vector < int > state(n,- 1 ); helper(n, 0 ,state); return res; } void helper( int n, int start,vector< int > & state) { if (start== n) { res ++ ; return ; } int i; for (i= 0 ; i<n; i++ ) { if (isValid(state,start,i)) { state[start] = i; helper(n,start + 1 ,state); state[start] =- 1 ; } } } bool isValid(vector< int > &state, int row, int col) { int i; for (i= 0 ; i<row; i++ ) if (state[i]==col||row-i==abs(state[i]- col)) return false ; return true ; } }; int main() { Solution s; cout <<s.totalNQueens( 4 )<< endl; }