10种经典机器学习算法——Python版

系统 1359 0

klearn python API

  • LinearRegression
            
              from sklearn.linear_model import LinearRegression         # 线性回归 #
module = LinearRegression()
module.fit(x, y)
module.score(x, y)
module.predict(test)
            
          
  • LogisticRegression
            
              from sklearn.linear_model import LogisticRegression         # 逻辑回归 #
module = LogisticRegression()
module.fit(x, y)
module.score(x, y)
module.predict(test)
            
          
  • KNN
            
              from sklearn.neighbors import KNeighborsClassifier     #K近邻#
from sklearn.neighbors import KNeighborsRegressor
module = KNeighborsClassifier(n_neighbors=6)
module.fit(x, y)
predicted = module.predict(test)
predicted = module.predict_proba(test)
            
          
  • SVM
            
              from sklearn import svm                                #支持向量机#
module = svm.SVC()
module.fit(x, y)
module.score(x, y)
module.predict(test)
module.predict_proba(test)
            
          
  • naive_bayes
            
              from sklearn.naive_bayes import GaussianNB            #朴素贝叶斯分类器#
module = GaussianNB()
module.fit(x, y)
predicted = module.predict(test)
            
          
  • DecisionTree
            
              from sklearn import tree                              #决策树分类器#
module = tree.DecisionTreeClassifier(criterion='gini')
module.fit(x, y)
module.score(x, y)
module.predict(test)
            
          
  • K-Means
            
              from sklearn.cluster import KMeans                    #kmeans聚类#
module = KMeans(n_clusters=3, random_state=0)
module.fit(x, y)
module.predict(test)
            
          
  • RandomForest
            
              from sklearn.ensemble import RandomForestClassifier  #随机森林#
from sklearn.ensemble import RandomForestRegressor
module = RandomForestClassifier()
module.fit(x, y)
module.predict(test)
            
          
  • GBDT
            
              from sklearn.ensemble import GradientBoostingClassifier      #Gradient Boosting 和 AdaBoost算法#
from sklearn.ensemble import GradientBoostingRegressor
module = GradientBoostingClassifier(n_estimators=100, learning_rate=0.1, max_depth=1, random_state=0)
module.fit(x, y)
module.predict(test)
            
          
  • PCA
            
              from sklearn.decomposition import PCA              #PCA特征降维#
train_reduced = PCA.fit_transform(train)
test_reduced = PCA.transform(test)
            
          

References


更多文章、技术交流、商务合作、联系博主

微信扫码或搜索:z360901061

微信扫一扫加我为好友

QQ号联系: 360901061

您的支持是博主写作最大的动力,如果您喜欢我的文章,感觉我的文章对您有帮助,请用微信扫描下面二维码支持博主2元、5元、10元、20元等您想捐的金额吧,狠狠点击下面给点支持吧,站长非常感激您!手机微信长按不能支付解决办法:请将微信支付二维码保存到相册,切换到微信,然后点击微信右上角扫一扫功能,选择支付二维码完成支付。

【本文对您有帮助就好】

您的支持是博主写作最大的动力,如果您喜欢我的文章,感觉我的文章对您有帮助,请用微信扫描上面二维码支持博主2元、5元、10元、自定义金额等您想捐的金额吧,站长会非常 感谢您的哦!!!

发表我的评论
最新评论 总共0条评论