题目连接:10069 - Distinct Subsequences
题目大意:给出两个字符串x (lenth < 10000), z (lenth < 100), 求在x中有多少个z。
解题思路:二维数组DP, 有类似于求解最长公共子序列, cnt[i][j]表示在x的前j个字符中有多少个z 前i个字符。
状态转移方程
1、x[j] != z[i] cnt[i][j] = cnt[i][j - 1];
2、x[j] == z[i] cnt[i][j] = cnt[i][j - 1] + cnt[i - 1][j - 1];
计算的时候使用高精度, 并且要见j == 0的情况归1, i == 0 的情况归0。
#include <stdio.h> #include <string.h> #include <iostream> using namespace std; const int N = 10005; const int M = 105; struct bign { int len, sex; int s[M]; bign() { this -> len = 1; this -> sex = 0; memset(s, 0, sizeof(s)); } bign operator = (const char *number) { int begin = 0; len = 0; sex = 1; if (number[begin] == '-') { sex = -1; begin++; } else if (number[begin] == '+') begin++; for (int j = begin; number[j]; j++) s[len++] = number[j] - '0'; } bign operator = (int number) { char string[N]; sprintf(string, "%d", number); *this = string; return *this; } bign (int number) {*this = number;} bign (const char* number) {*this = number;} bign change(bign cur) { bign now; now = cur; for (int i = 0; i < cur.len; i++) now.s[i] = cur.s[cur.len - i - 1]; return now; } void delZore() { // 删除前导0. bign now = change(*this); while (now.s[now.len - 1] == 0 && now.len > 1) { now.len--; } *this = change(now); } void put() { // 输出数值。 delZore(); if (sex < 0 && (len != 1 || s[0] != 0)) cout << "-"; for (int i = 0; i < len; i++) cout << s[i]; } bign operator + (const bign &cur){ bign sum, a, b; sum.len = 0; a = a.change(*this); b = b.change(cur); for (int i = 0, g = 0; g || i < a.len || i < b.len; i++){ int x = g; if (i < a.len) x += a.s[i]; if (i < b.len) x += b.s[i]; sum.s[sum.len++] = x % 10; g = x / 10; } return sum.change(sum); } }; bign cnt[M][N], sum; char x[N], z[M]; int main() { int cas; scanf("%d", &cas); while (cas--) { scanf("%s%s", x, z); int n = strlen(x), m = strlen(z); for (int i = 0; i <= n; i++) cnt[0][i] = 1; for (int i = 1; i <= m; i++) { cnt[i][0] = 0; for (int j = 1; j <= n; j++) { cnt[i][j] = cnt[i][j - 1]; if (z[i - 1] == x[j - 1]) cnt[i][j] = cnt[i][j] + cnt[i - 1][j - 1]; } } cnt[m][n].put(); printf("\n"); } return 0; }